next up previous
Next: Maximum-Likelihood spectral amplitude estimator [6] Up: Speech Enhancement Summaries Previous: Ephraim and Malah suppression

Frequency to eigendomain transform

Denote $E(\omega)=[1 \quad e^{-j\omega} \quad \ldots \quad
e^{-j\omega (P-1)}]'$ Given the covariance matrix $R=toeplitz(r_0,\ldots,r_{P-1})$ where

\begin{displaymath}
\begin{array}{lll}
r_p & = & \frac{1}{N} \sum_{n=0}^{N-1-p...
...i}^{\pi} \Phi(\omega)e^{-j \omega
p} d\omega\\
\end{array}
\end{displaymath}

Form $R=\sum_{i=1}^{P} \lambda_i v_i v_i'$. The Frequency to Eigendomain Transformation is given by


\begin{displaymath}
\begin{array}{lll}
\lambda_i & = & v_i' R v_i\\
& = & v_...
...t^2
d\omega \textrm{ (zero-phase filtering)}\\
\end{array}
\end{displaymath}

To find the Inverse Frequency to Eigendomain Transformation consider

\begin{displaymath}
E(\omega)' \textrm{ toeplitz}(r_0,\ldots,r_{P-1}) E(\omega) = P
\sum_{i=-(P-1)}^{P-1} r_i w_b(i) e^{-j\omega i}
\end{displaymath}

where $w_b$ is the Bartlett (triangular) window.


\begin{displaymath}
\begin{array}{lll}
\Phi_b(\omega) & = & \sum_{i=-(P-1)}^{P...
...i=1}^{P} \lambda_i V_i(\omega)
V_i^*(\omega)\\
\end{array}
\end{displaymath}



Vinesh Bhunjun 2004-09-17