## On Quantifying Performance Enhancement of Distributed SDN Architecture

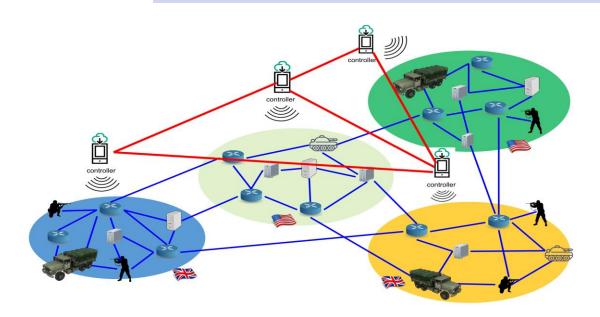
Ziyao (Spike) Zhang Imperial College London Liang Ma IBM US

Kin K. Leung Imperial College London

September 2017
DAIS-ITA Annual Fall Meting

### Main Contents

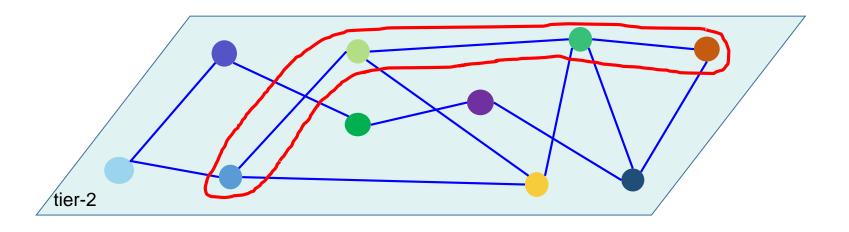
- Motivation
- Problem statement
- Network Model
- Analysis of 3 scenarios correspond to different synchronization levels
- Evaluation and results
- Summary
- Future plans

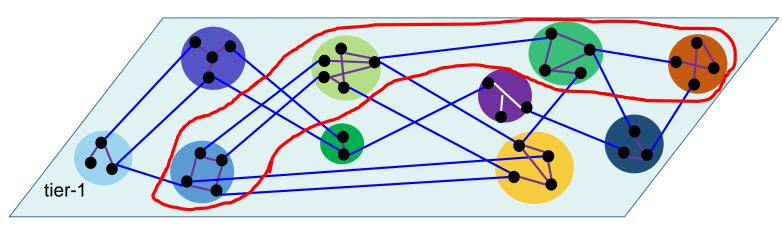

### Motivation

The SDN paradigm offers potential performance enhancement of a network

Many efforts from both academia and industry for the design of protocols/architectures to take advantage of SDN

Existing work
concerning
performance evaluation
are mainly
prototyping/emulation
based


Problem: the lack of fundamental understanding of the bounds of performance enhancement of SDN




### Problem statement

- Goal: gain fundamental (analytical) understandings of performance enhancement offered by SDN
- Performance metric: average path length (APL) measured by # hops,
   will be extended to include non-uniform edge weight scenarios
- Methodology:
- (1) Construct a network using a generic model for analysis
- (2) Propose mathematical models to analyse APL under different controller synchronization levels:
  - > optimal performance: complete control plane syncs
  - > worst performance: no syncs among domains
  - > somewhere in the middle: partial syncs via SDN controllers
- (3) Simulation confirming the accuracy of proposed analytical model

### Network Model

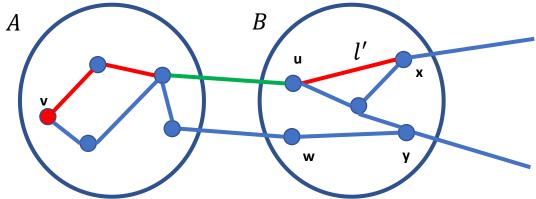




This model reflects the nature of the distributed SDN network on page 3, and it is more generic compare to our old network model presented in June

Tier-1: domains whose topology is decided by degree distribution extracted from real network

Tier-2: each domain is abstracted as a single node and two domains are joined by a link in domain-wise topology if there are physical connections


#### Parameters for the network model

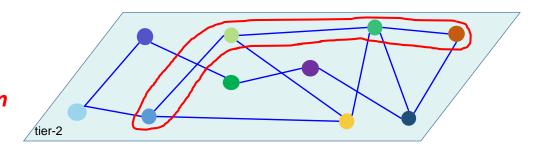
- > n: # nodes in one domain
- > m: # domains in one domain
- $\triangleright \beta$ : max # inter-domain connections between two domains
- $\triangleright \gamma$ : # gateway nodes in one domain for connection with another domain
- Inter- and inter- domain degree distribution

### Network model (Cont.)

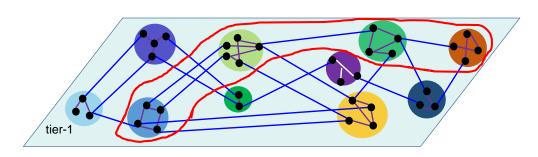
 Controller synchronization: when two controllers synchronize, they share with each other the distance between desired ingress/egress node pairs

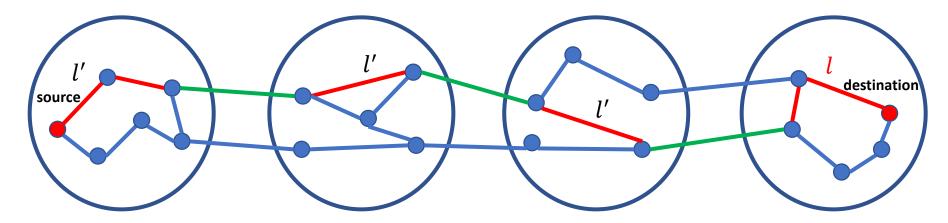
Example: if controller A syncs with controller B, then A will know distance between u/x,y and w/x,y, and vice versa




 Controller placement/organization: no specific requirements on the location of controllers or how they are organized. The only assumption is that each domain has one logically centralized controller

Recall: our goal is to obtain fundamental understandings of performance enhancement by SDN controllers, not where or how they are placed


## Inter-domain routing strategies - no sync among domains


- ➤ 1. based on the addresses of src/dest, decide a domain-wise route by choose the shortest
- ➤ 2. find nearest gateway node in current domain from current sending node and egress the packet to the next domain on domain-wise route

Assumptions: tier-2 topology known by all domains (as in BGP)



BGP-like protocol
(Border Gateway Protocol)





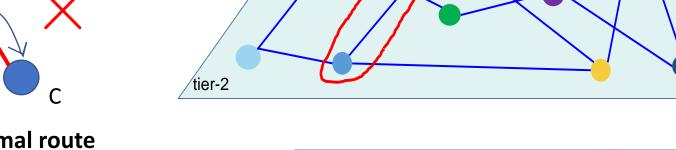
### Main analytical results- no sync among domains

High level goal:  $L_{BGP}$ = APL in one domain  $\times$  avg. # domains on a domain-wise route

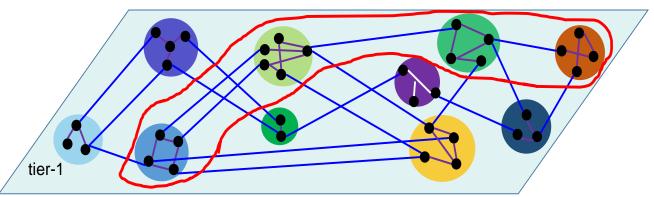
- lacksquare  $/ \sim /n(n/z_1)//n(z_2/z_1)+1$  (1)  $m{l}$ : APL between two random nodes within one domain
- $\triangle \simeq ln(m/z_1')/ln(z_2'/z_1') + 2$  (2)  $\triangle$ : avg. # domains on a domain-wise route

- ullet  $\gamma = n(1-(1-1/n)^eta)$  (4)  $\gamma$ : # gateway nodes in one domain
- lacksquare  $L_{ ext{BGP}}\simeq (I'+1)(\Delta-1)+I$  (5)  $L_{ ext{BGP}}$  : APL under BGP


 $z_i$ : avg. # vertices i hops away from an arbitrary node  $z_i'$ : corresponding  $z_i$  in domain-wise network l': average distance between an ordinary node and its nearest gateway node

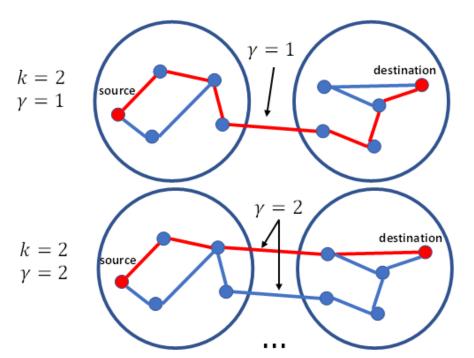

- > equation (1): a result drawn from existing literature
- > equation (2): equation (1) applied to domain-wise topology
- right equation (3): we extend the analysis of shortest APL between two nodes into the analysis of shortest APL between one node and a set of nodes

# Inter-domain routing strategies - complete sync among domains


Observations: any domain-wise routes for a src/dest pair will involve domains connected in a bus topology from the source domain to the destination domain

some scenarios (below) may occur. But statistically speaking, these will lead to a larger expectation of APL






- ➤ Theorem 1: on average, an optimal route involves minimum number of domains. (under our 2-tier network model)
- ➢ Based on theorem 1, we need to know: 1) APL between two nodes in the first and last domains of a bus; 2) the distribution of the length of the bus



## Main analytical results - complete sync among domains

Calculate the APL between two nodes in the first and last domain of domains connected in a bus topology



APL between two arbitrary nodes in two synced domains

Main elements of the developed analytical framework:

- For individual domains: (step 1)
  - > Input: degree distribution
  - > Output: distance distribution
- For domains connected in a bus: (step 2)
  - $\triangleright$  inputs: (1) distance distribution in each domain (2) network parameter  $\beta$
  - $\blacktriangleright$  Output: expectation of the APL between two arbitrary nodes in the first and last domains in the bus, with respect to a specific  $\beta$
- For tier-2 topology: (step 3)
  - > Input: domain-wise degree distribution
  - Output: distribution of the length of the bus

### Main analytical results - complete sync among domains (Cont.)

Inputs: (1) distance distribution in each domain (step 1); (2) network parameter  $\beta$  (step 2); (3) domain-wise distance distribution (step 3) Output: APL between two randomly selected nodes in two domains

$$f_{D_1}(d) = \Pr(D_1 = d) = z_d/n, d = 0, 1, 2, ...$$

$$f_{D_k}(d) = \begin{cases} (1 - F_U(d-1))^{\beta^{k-1}} & d \ge k, \\ -(1 - F_U(d))^{\beta^{k-1}} & d = k-1. \end{cases}$$

$$L^* = \sum_{y=2}^m L_y h_Y(y)$$

inter-domain synchronizations

 $f_{D_1}(d)$ : distance distribution in one domain

 $f_{D_k}(d)$ : joint distance distribution between two random nodes in the first and last domains of k domains connected in a bus topology, with network parameter  $\beta$ 

**U**: RV of distance between two random nodes in the first and last domains of kdomains connected in a bus topology, with parameter  $oldsymbol{eta}=\mathbf{1}$ 

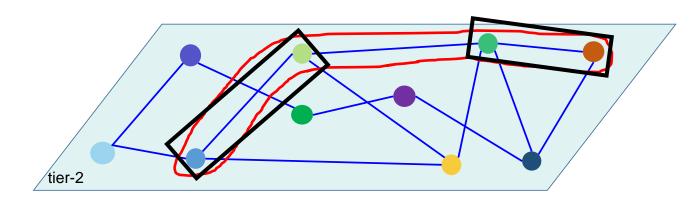
 $F_{IJ}(d)$ : CDF of RV U

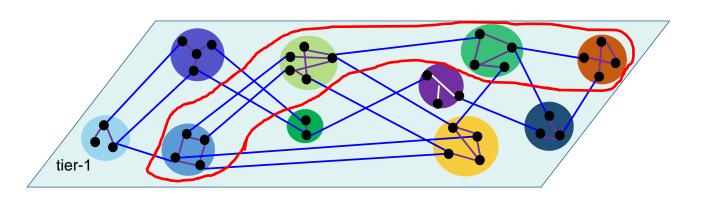
# Inter-domain routing strategies - partial sync among domains

Tier-2 topology: select domain-wise route

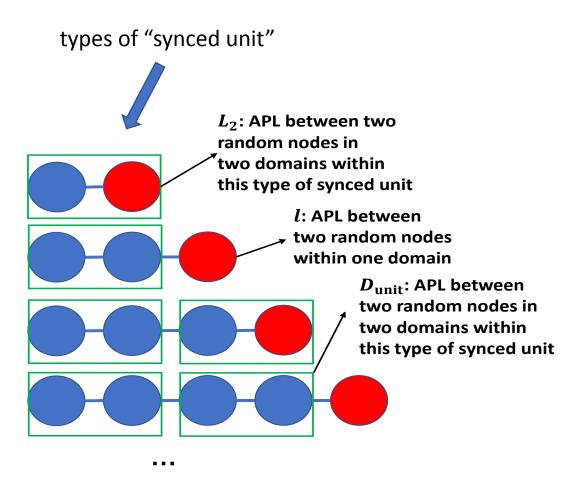


Form "synced units" on the domain-wise route





Sync based on these "synced units"

- > (1) The domain-wise path is jointly constructed by each controller in these domains, like BGP;
- ➤ (2) The SDN controller in current domain follows the instruction from the previous domain(s); if no such instruction exists, go to (3);
- (3) The SDN controller in the current domain selects a path starting from the ingress node to the closest egress node, and passes on the route selection results to the next domain


Note: We don't intend to propose any SND controller synchronization protocol.

This section is only to demonstrate how to apply of our proposed analytical model in analysis

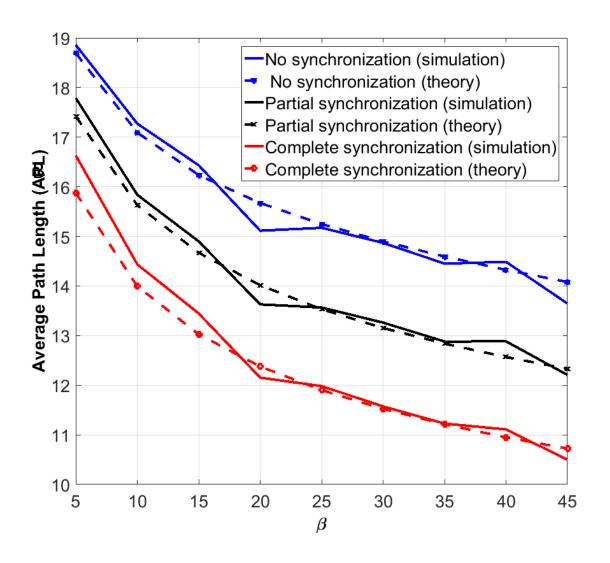




## Main analytical results - partial sync among domains



$$L_{SDN} = \sum_{y=2}^{m} L_{y}^{SDN} h_{Y}(y)$$


 $L_k^{SDN}$ : APL in a bus topology with k domains

 $L_{unit}$ : APL in step (3)

**L<sub>SDN</sub>:** APL under the

simple scheme

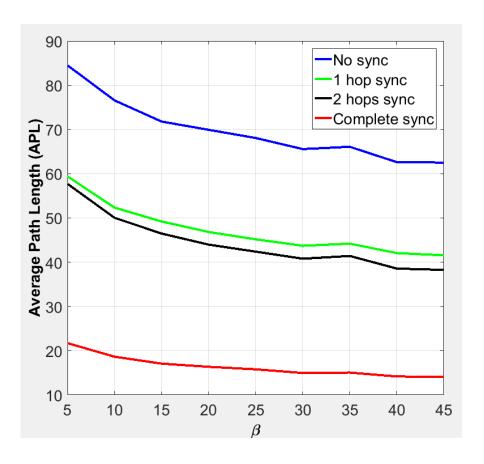
### Evaluations and results



- Simulation settings:
  - $\rightarrow n = 350$ ; (# nodes each domain)
  - $\rightarrow m = 50$ ; (# domain)
  - ➤ Intra-domain degree distribution collected from RocketFuel Project
  - Inter- domain degree distribution synthesised due to the lack of actual dataset

- Simulation results confirm the accuracy of our analytical framework
- With a given and limited synchronization level, the gap to optimal value by around can be reduced by 50%

### Summary of our work


 Goal: gain fundamental (analytical) understandings of performance enhancement offered by SDN

#### Main contributions:

- ➤a generic 2-tier network model
- ➤ analytical framework quantifying performance enhancement under different level of SDN controller synchronizations
- simulation results confirming the accuracy of our developed analytical framework

### Future plans

- Map network settings/status to edge weight in the network graphs of each domain
- Extend current analytical framework to heterogeneous edge weight scenarios
- Consider relaxing more system assumptions, such as the inter-domain connection parameter  $\beta$
- Take into consideration some SDN controller placement-related problems in extending current work (brain storm sessions and discussions with colleagues)



Non-uniform edge weights scenarios: Initial simulation results

Questions?

Thank you!