On Quantifying Performance Enhancement of Distributed SDN Architecture

Ziyao Zhang (Imperial College London), Liang Ma (IBM US), Kin K. Leung (Imperial College London)

Summary & Problem Statement

Goal: Quantify performance enhancement by SDN Performance Metric: APL: the average length of the shortest path between two arbitrary nodes in the network under different synchronization levels **Performance Bounds:**

Upper bound: complete control plane syncs; Somewhere in the middle: partial syncs; Lower Bound: no syncs among any domains;

Network Model

Y: RV of # domains that the shortest path between two arbitrary nodes traverses $h_{y}(y)$: PMF of RV Y

Tier-1: domains whose topology is decided by degree distribution extracted from real network

Tier-2: each domain is abstracted as a single node and two domains are joined by a link in domain-wise topology if there are physical connections

No Inter-domain Syncs

Complete Inter-domain Syncs

APL between two arbitrary nodes in two synced domains

•
$$f_{D_1}(d) = \Pr(D_1 = d) = z_d/n, d = 0, 1, 2,$$

• $f_{D_k}(d) = \begin{cases} (1 - F_U(d-1))^{\beta^{k-1}} & d \ge k, \\ -(1 - F_U(d))^{\beta^{k-1}} & d \ge k, \end{cases}$

Distribution of the shortest APL of domain-wise routes

k = 2, a%

k = 3, b%

 $f_{D_1}(d)$: distance distribution in one domain $f_{D_{\mu}}(d)$: joint distance distribution between two random nodes in two terminal domains of k domains connected in a bus topology

domains connected in a bus

k = 4, c%

 $\int (1-(F_U(d))^{\beta^{k-1}} \qquad d=k-1.$ $F_U(d)$: CDF of $f_{D_k}(d)$ \blacktriangleright $L_k := \mathbb{E}[U]$ L_k : mean of RV D_k **U**: RV of distance between two random nodes in two • $L^* = \sum_{y=2}^m L_y h_Y(y)$ $L^*: APL under complete inter-$ domain synchronizationsterminal domains of k

Theorem 1. $L_k < L_{k+1}$ under the 2-tier network model.

Partial Inter-domain Syncs

How SDN-assisted inter-domain routing works?

(1) The domain-wise path is jointly constructed by each controller in these domains like BGP;

(2) The SDN controller in the current domain follows the instruction from the previous domain(s); if no such instruction exists, go to (3); (3) The SDN controller in the current domain selects a path starting from the ingress node to the closest egress node

$$L_{k}^{\text{SDN}} = \begin{cases} (\frac{k}{2} - 1)L_{\text{unit}} + L_{2} + \frac{k}{2} - 1 & k \text{ is even,} \\ \\ \frac{k-1}{2}L_{\text{unit}} + l + \frac{k-1}{2} & k \text{ is odd.} \end{cases}$$
$$L_{\text{SDN}} = \sum_{y=2}^{m} L_{y}^{\text{SDN}} h_{Y}(y)$$

Evaluations

L₂: APL between two random nodes in two domains within this type of synced unit

topology

l: APL between two random nodes within one domain D_{unit}: APL between two random nodes in

two domains within this type of synced unit

L^{SDN}: APL in a bus topology with k domains L_{unit}: APL in step (3) L_{SDN}: APL under

the simple scheme

• $I \simeq ln(n/z_1)/ln(z_2/z_1) + 1$ *l*: APL between two arbitrary nodes within one domain • $\Delta \simeq ln(m/z_1')/ln(z_2'/z_1') + 2$ Δ : avg. # domains on a domain-wise route $I' \simeq \begin{cases} \frac{n-\gamma}{n} \left(\frac{\ln(\frac{n+1-\gamma}{\gamma})}{\ln(z_2/z_1)} + 1 \right) & \text{for } \gamma \leq (n+1)/2, \\ \frac{n-\gamma}{n} & \text{for } \gamma > (n+1)/2. \end{cases}$ • $\gamma = n(1 - (1 - 1/n)^{\beta})$ γ : # gateway nodes in one domain • $L_{ t BGP}\simeq (l'+1)(\Delta-1)+l$ $L_{ t BGP}$: APL under BGP n: # nodes in one domain \mathbf{z}_i : avg. # vertices *i* hops away from an arbitrary node \mathbf{z}'_i : corresponding \mathbf{z}_i in domain-wise network

l': average distance between an ordinary node and its nearest gateway node

Distributed Analytics and Information Service International Technology Alliance Annual Fall Meeting, September 2017

- Intra-domain topology collected from the **Rocketfuel Project**
- Simulation results confirm the validity of analytical framework
- A basic SDN-based strategy can Reduce the gap to optimal value by Around 50%

