

Tutorial 8

1. (a). If random variable X and Y are identically distributed, not necessarily independent, show that:

$$\text{cov}(X + Y, X - Y) = 0$$

(b). Now consider random variables X, Y and Z. The conditional covariance of X and Y, given Z, is defined by

$$\text{cov}(X, Y | Z) = E[(X - E[X | Z])(Y - E[Y | Z]) | Z]$$

i. Show that

$$\text{cov}(X, Y | Z) = E[XY | Z] - E[X | Z]E[Y | Z]$$

ii. Show that

$$\text{cov}(X, Y) = E[\text{cov}(X, Y | Z)] + \text{cov}(E[X | Z], E[Y | Z])$$

(Hint: take the expectation of both sides of the result in part i)

iii. Set X=Y in part ii and obtain a formula for $\text{var}(X)$ in terms of conditional expectations.

2. (a). Let X, Y and Z be zero-mean random variables. Determine the linear squares estimate $\hat{Z} = \alpha X + \beta Y$ of Z given X and Y, i.e., find α and β to minimize the mean square error. You should express the optimal values of α and β in terms of variances and covariances of the random variables.

(b). A stationary, second order, stochastic process $\{y_k\}$ is given by the following difference equation:

$$y_k + ay_{k-1} + by_{k-2} = e_k$$

where a and b are constants and $\{e_k\}$ is a sequence of zero mean, uncorrelated random variables with unit variance.

i. Find the first three values of the covariance function $r_y(k)$, $k=0, 1$ and 2 for the sequence $\{y_k\}$.

ii. Using results in part a, determine the linear least squares estimate of y_k given y_{k-1} and y_{k-2} .

Solution 8

1. Solution:

$$\begin{aligned}
 \text{Cov}(x+y, x-y) &= \text{Cov}(x, x) + \text{Cov}(x, -y) + \text{Cov}(y, x) \\
 &\quad + \text{Cov}(y, -y) \\
 &= \text{Var}(x) - \text{Cov}(x, y) + \text{Cov}(y, x) - \text{Var}(y) \\
 &= \text{Var}(x) - \text{Var}(y) \\
 &= 0 \quad \because x \text{ and } y \text{ are identically distributed.}
 \end{aligned}$$

$$\begin{aligned}
 \text{Cov}(x, y|z) &= E\{x|z - E[x|z]y - xE[y|z] + E[x|z]E[y|z]\} \\
 &= E[x|z] - E[x|z]E[y|z] - E[x|z]E[y|z] \\
 &\quad + E[x|z] \cdot E[y|z] \quad \because E[\cdot] \text{ is a constant} \\
 &= E[x|z] - E[x|z]E[y|z]
 \end{aligned}$$

Take the expectation on both sides of result in part i:

$$\begin{aligned}
 E[\text{Cov}(x, y|z)] &= E\{E[x|z] - E[x|z]E[y|z]\} \\
 E[\text{Cov}(x, y|z)] &= E[x|z] - E\{E[x|z]E[y|z]\} \quad \text{--- (1)}
 \end{aligned}$$

Consider $\text{Cov}(E[x|z], E[y|z])$.

$$\begin{aligned}
 \text{Cov}(E[x|z], E[y|z]) &= E\{E[x|z]E[y|z]\} \\
 &\quad - E\{E[x|z]\} \cdot E\{E[y|z]\} \\
 \text{Cov}(E[x|z], E[y|z]) &= E\{E[x|z]E[y|z]\} - E[x]E[y] \quad \text{--- (2)}
 \end{aligned}$$

Combine (1) and (2) :

$$\begin{aligned}
 E[\text{Cov}(x, y|z)] + \text{Cov}(E[x|z], E[y|z]) &= E[x|z] - E[x]E[y] \\
 &= \text{Cov}(x, y) \quad \text{Q.E.D.}
 \end{aligned}$$

$$\text{iii) } \text{Cov}(x, y|z) = \text{Var}(x|z) \text{ when } y=x.$$

The LHS of result in part ii:

$$\text{Cov}(x, y) = \text{Var}(x)$$

$$\begin{aligned}
 \text{The RHS: } E[\text{Cov}(x, x|z)] + \text{Cov}(E(x|z), E(x|z)) &= E[\text{Var}(x|z)] + \text{Var}(E[x|z]) \\
 \Rightarrow \text{Var}(x) &= E[\text{Var}(x|z)] + \text{Var}(E[x|z])
 \end{aligned}$$

2. Solution:

$$r_y(0) = \frac{1}{1-b^2}$$

$$r_y(1) = \frac{-a}{1+b} \cdot \frac{1}{1-b^2}$$

$$r_y(2) = \left(-b + \frac{a^2}{1+b} \right) \cdot \frac{1}{1-b^2}$$