Tutorial 8

(a). If random variable X and Y are identically distributed, not necessarily independent,
show that:

cov(X +Y,X-=Y)=0
(b). Now consider random variables X, Y and Z. The conditional covariance of X and Y,
given Z, is defined by

cov(X,Y|Z) = E[(X - E[X |Z])(Y - E[Y|Z])|Z]
i Show that
cov(X,Y |Z) = E[XY|Z]-E[X |Z]E[Y|Z]
ii. Show that
cov(X,Y) = E[cov(X,Y |Z)]+cov(E[X |Z], E[Y |Z])

(Hint: take the expectation of both sides of the result in part i)
iii. Set X=Y in part ii and obtain a formula for var(X) in terms of conditional
expectations.

(a). Let X, Y and Z be zero-mean random variables. Determine the linear squares

estimate Z=aX + Y of Zgiven Xand Y, i.e., find ¢ and g to minimize the mean square
error. You should express the optimal values of « and £ in terms of variances and
covariances of the random variables.

(b). A stationary, second order, stochastic process { y, } is given by the following
difference equation:
Y +ay, by, , =€

where a and b are constants and {e, } is a sequence of zero mean, uncorrelated random
variables with unit variance.
i. Find the first three values of the covariance function r, (k) ,k=0,1 and 2 for the

sequence {y, }.
ii. Using results in part a, determine the linear least squares estimate of y, given

Ye,and y, .



Solution 8
1. Solution:
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2. Solution:




