Tutorial 7

1. Out of the d doors of my house, suppose that in the beginning k> 0 are unlocked and

d —k are locked. Every day, | use exactly one door, and | am equally likely to pick any of
the d doors. At the end of the day, | leave the door | used that day locked.
Show that the number of unlocked doors at the end of day n, L, ,evolves as the state in a

Markov process for n 2 1. Write down the transition probability p;

A certain type of component has two states: ON (1) and OFF (0). In state 0,
the process remains there for an exponential(«) length of time, and then moves
to state 1. The time in state 1 is also exponentially distributed with parameter
. The system has two components, A and B. with distinct parameters: a4, 74
and ap. [Ip respectively. In order for the system to operate. at least one of the
components A of B must be operating (i.e. the system is parallel). Assume that
the two components i the system are mdependent of one another. Determine
the long run probability that the system 1s operating by

(a) Considering each component separately as a two state Markov chain and
using their statistical independence;

(b) Considering the system as a four state Markov chain.

Consider the Markov chain {X,, },,>0, with S = {0, 1, 2}, whose transition matrix
i

o

Let f(0) =0, f(1) = f(2) = 1. Now define ¥}, = f(X,,). Is {Y¥, },>0 a Markov

chain?
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Solution:

Given L,,_1, the history of the process (i.e., L,,_9.L,,_3....) is irrelevant for determining
the probability distribution of L,. the number of remaining unlocked doors at time n.
Therefore, L,, is Markov. More precisely,

P(Ln — .ﬂLn-—L — " LQ—Q =k, ..., Ll — f’j) — P(L'TI — .ﬂLn—l — ") = Pij-

Clearly, at one step the number of unlocked doors can only decrease by one or stay con-
stant. So, for 1 < ¢ < d, if 7 = i—1, then p;; = P(selecting an unlocked door on day n+

1L, =1i) = é For 0 < ¢ < d, if j =4, then p;; = P(selecting an locked door on day n+

1oy, =14) = dgi, Otherwise, p;; = 0. To summarize, for 0<4, j<d, we have the following:

i P
a J=1

Pij = i } — 7 —1
0  otherwise

Solution:

(a) Considering each component separately as a two state Markov chain and using their
statistical independence:
Here we have that for machine A the generator is

| —oa g
(7_4—[ i 7‘.‘3_4]‘

and for machine B the generator is

= —apg ap
TR = JB —;J’B .

Solving the equations 7G4 = 0. and a similar one for B, gives us that the long run
distribution of each system 1s given by w4 = ﬁ{;)ﬁ. w4}, and similarly for B. Hence,
the probability that the system is operating may be written as

P(either A or B is working)
1 — P(both A and B not working)

348
(va+ Ba)lap + 5p)’

(b) Considering the system as a four state Markov chain.

In this case we carefully right down the the generator for the four state Markov chain,
with S = {00,01,10,11}. Here, for example, 01 means that machine A is not working
and machine B is working. The generator becomes

7(r}‘4 + rlB) ap a4 0
(_; o :jB —((I._4 + );B) 0 A
G4 0 —(34 + ag) apg

0 ;)]__1 :'.jB —(;f__l -+ ;J’B)

Now, we have to show that the answers from part (a) are the same as the answers here.

That is, we should solve 7G = 0. However, this could be a bit lengthy. However, we do

know what the answer is from part (a). Hence, using Theorem 5.10 from the summary

notes, once we have solution @ we know it’ll be nnique. The answer 7 in this case 1s
given by

! {BalB. I3 3 }

T = - o . Balfp. Saap. aalp, daapy.

(va + Fa)(ap + OB) !

No. Try to calculate P(y, =0}, =1)- you can’t. The problem is that we’ve lost too much

information by “putting together” states 1 and 2 of the original chain x, .




