
Birth/Death Process 
 

Consider a discrete-state, continuous-time Markov chain { with state space }tN
{0,1, 2,..., }E N=  

Then {  is a birth/death process iff }tN
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Future of { is regardless of its past history. The only possible transitions from any state i
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Birth/death equations: 
Denote the state probabilities at time t by: ( ) ( ),  for 0,1,...,i tp t P N i i N= = = . Since { is Markov, we 
can compute the state probabilities 

}tN

( )ip t from knowledge of the initial distribution { ( plus 
the transition rates 

0)}ip

iλ , iμ . 
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divide throughout by ,and let .The result is: tΔ 0tΔ →
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Now suppose for each state : i ( ) constant probability, 
t

i ip t π→ , that is ( ) 0tdp t
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The birth/death equations then become algebraic equations: 
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These equations are called the equilibrium equations. We have 0Qπ ⋅ = . 
 
 
 

M/M/1 queuing system 
                       (Poisson arrival stream/ Exponential service times/ 1 server) 
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