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2. Consider a stationary scalar output process { and vector state process { }}ky kx  
governed by the equations: 
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Here, A is a given matrix and b and c are givenn n× vectorn − . {  is a sequence of 
zero mean, uncorrelated random variables, each with unit variance. Develop formulae 
for the covariance matrix of 
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kx and the variance of : ky
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3. Speech Predictor: Let be a sequence of samples of a speech voltage 

waveform. Suppose that {
1 2 3, , ,..X X X

}k

.

x  represents a stationary, second order, stochastic 

process where The sample 2 2[ ] 0 for all 1, 2,3...E x kσ > =0 and [ ]k kE x= = 2kX − and 1kX −  

are used to predict kX with the least mean square error. That is, for  3,4,5.= ..k
^

1 2k k kX aX bX− −= +  

is the least squares predictor of kX  where  and b  are constants.  a

Find  and  in terms of the variance a b 2σ and covariances of { }kx  
 
 
 
 
 
 

4. Given the stationary property of the process, the covariance of { }kX depend on the 
“distance” between the time indices, but not on the specific index values. Following 
above question, we define for all i and j : 

2cov( , )i j i jX X ρ σ−= ⋅  

where 00 and 1.kρ ρ> = (For example, 2
2 2cov( , )i i XX X ρ σ+ = ⋅ ) Find  and  in terms 

of 
a b

1ρ and 2ρ . 


