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linear Prediction: A Tutorial  Review 

analysis of discrete sigruls The signal is modeled as a linear  combina- 
Absrruct-Thii paper gives an exposition of linear prediction  in  the 

tion  of its past values d present and past  values of a hypothetical 
input to a system whose output is the  given signal. In the  frequency 
domain,  this is equivalent to modeliug the signal spec- by a pole- 
zero spectrum. The major part of the paper is devoted to all-pde 
models.  The model parameters are obtained by a least  squares nnnlysis 
in  the  time domain Two methods result, depending on whether  the 
signal is wsumed to be stationay or nonstationary. The  same results 
are then  derived in the  frequency  domain.  The resulting spectral match- 
ing formulation  allows  for  the modeling of sehted poltiom of a 
spectnun, for arbitrary spectral shaping in the frequency  domain, and 
for the modeling of continuous as well as discrete spectra. Thii also 
lepds to a dslss ion of the advrntnges and disodv~ntrges of the least 
quues  mor criterion A spectral interpretation is given to the normal- 
ized minimum prediction error. Applications of the  normalized 
error are given,  including  the  determination of an “optimal” num- 
ber of poles, The use of linear prediction  in data  compression is 
reviewed.  For purposes of tmmnission, particular attention is given to 
the  quantization and encoding of the  reflection (or partial correlation) 
coefficients Finally, a brief introduction to polezero modeling is 
given 

I. INTRODUCTION 
A.  Overview 

T HE MATHEMATICAL analysis of the behavior of gen- 
eral dynamic systems  (be they engineering, social, or 
economic) has  been an area of concern  since the begin- 

ning of this  century.  The  problem has  been pursued with 
accelerated vigor since the advent of electronic digital com- 
puters over two decades  ago. The analysis of the  outputs of 
dynamic systems was for  the most  part the  concern of “time 
series analysis,” which was developed mainly within the fields 
of statistics,  econometrics,  and  communications. Most of the 
work on  time series analysis was actually done by  statisticians. 
More recently, advances in the analysis of dynamic systems 
have been  made  in the field of control  theory based on  state- 
space concepts and time  domain analysis. 

This  paper is a tutorial review of one aspect of time series 
analysis: linear  prediction  (defined here).  The  exposition is 
based on  an intuitive approach, with  emphasis on  the clarity 
of ideas rather  than mathematical rigor. Although the large 
body of related literature available on this topic  often requires 
advanced knowledge of statistics and/or  control  theory con- 
cepts,  this  paper  employs no  control  theory  concepts per se 
and only the basic notions of statistics and random processes. 
For  example,  the very important  statistical  concepts of con- 
sistency and efficiency [74] , [75 ]  in  the  estimation of pa- 
rameters will not be  dealt with.  It is hoped this  paper will 
serve as a  simple introduction  to some of the  tools used in  time 
series analysis, as well as be a  detailed analysis of those aspects 
of linear prediction of interest to  the specialist. 
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Fig. 1. Discrete speech  production  model. 

B. Current  Applications 
Before we delve into signal analysis, we shall give three ex- 

amples of the  types of problems that are of current  interest.’ 
These examples will then serve to illustrate  some of  the con- 
cepts that are  developed. 

Neurophysics [I 51,  (321,  [36] ,  [I 021: The  spontaneous 
electrical  brain  activity is normally  measured  by means of 
electrodes placed on  the patient’s scalp. The recordings, 
known as electroencephalograms (or EEG signals), show  cer- 
tain periodicities (sharp resonances)  accompanied  by  some 
randomness. These signals are believed to carry information 
about  the medical status of the brain and are used by 
physicians as a means of diagnosis. It is of interest to detect 
the presence, position, and strength of the  different reso- 
nances, known as rhythms.  The  three most  common rhythms 
are known as the  alpha,  beta, and  delta rhythms.  Therefore, 
the basic interest here is to describe the  spectrum  in a simple 
mathematical manner  that would yield the characteristics of 
the different rhythms. 

Geophysics [84]-[87], (1141: In one of the successful 
methods of oil exploration, a charge of dynamite is exploded 
in the  earth,  and  the resulting  vibrations  at various points  on 
the surface of the ground  are  recorded by a seismograph as 
seismic traces. The  job of the geophysicist is to use these 
traces  in the  determination of. the  structure of the sedimentary 
rock layers.  Such information is then used to decide on  the 
presence of oil in that area. Of interest  here are the direct ar- 
rival times and strengths of the  deep reflections of the ex- 
plosion,  which are then used to  determine  the layered  struc- 
ture. If somehow one is able to  remove (deconvolve) the 
impulse response of the  structure  from  the seismic trace,  the 
desired arrival times  should  appear as impulses of different 
phases and amplitudes. 

Speech  Communication [I 01, [331, [ 4 7 / ,  [50/, 1.511, [62 / ,  
[ 68 ] ,   [ 89 ] :  In EEG analysis, the  spectrum of the recorded 
signal was  of interest.  In seismic analysis, the spectral prop- 
erties of the seismic trace were of interest only to  facilitate the 
deconvolution process in order t o  obtain  the desired impulses. 
In the analysis of speech, both  types of information are of 
interest. 

Fig. 1  shows  a rather successful model of speech production. 
The  model consists of a  filter that is excited by either a quasi- 
periodic  train of impulses or a random noise source. The 
periodic source produces voiced sounds such as vowels and 

ample [171. 
For applications to  economic and industrial time series, see  for  ex- 
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nasals, and the noise source produces unvoiced or  fncated 
sounds such as the fricatives (f, th ,  s, sh). The parameters of 
the  filter  determine  the  identity (spectral  characteristics) of 
the particular  sound for each of the  two  types of excitation. 

Given a  particular  speech signal, it is of interest to  determine 
the general type of sound  it is, voiced or  fricated, and if voiced 
what the pitch  period is (i.e., distance  between  pitch pulses). 
In  addition,  one is interested  in  the  identity of the  sound 
which can be obtained  from  the  spectrum. Such derived in- 
formation can then be used in  an  automatic speech recogni- 
tion system or a  speech  compression  system. 

C. Linear  Prediction 
In applying time series analysis to the  aforementioned ap- 

plications,  each  continuous-time signal s ( t )  is sampled to ob- 
tain  a  discrete-time2 signal s (nT) ,  also known as a t h e  series, 
where n is an integer variable and T is the sampling interval. 
The sampling frequency is then fs = 1/T. (Henceforth, we 
shall abbreviate s(n7') by sn with no loss in  gtnerality.) 

A  major concern of time series analysis [ a ] ,  [ 11 1 ,  [ 121, 
1141, [171,  [431,  [451,  [461, [ M I ,  [1051,  [1121 has been 
the  estimation of power spectra,  crossspectra, coherence func- 
tions, autocorrelation  and cross-correlation functions. A  more 
active concern at this time is that of system modeling. It is 
clear that if one is successful in developing a parametric model 
for  the behavior of some signal, then  that model can be used 
for  different applications, such as  prediction or forecasting, 
control,  and  data compression. 

One of the most  powerful models currently in use is that 
where  a signal s, is considered to be the  output of some sys- 
tem with  some unknown  input Un such  that  the following re- 
lation holds: 

D "  0 

I =  0 

where u k ,  1 Q k 4 p ,  b l ,  1 Q 1 < q ,  and the gain G are the pa- 
rameters of the  hypothesized system. Equation  (1) says that 
the  "output" s, is a  linear function of past outputs  and pres- 
ent and  past inputs. That is, the signal s* is predictable from 
linear combinations of past outputs  and  inputs. Hence the 
name linear prediction. 

Equation  (1) can also be specified in  the  frequency  domain 
by  taking the z transform  on  both sides of (1). If H ( z )  is the 
transfer  function of the  system, as in Fig. 1,  then we have 
from  (1): 

where 

S ( z )  = s,z-" 
00 

is the z transform of s,, and U ( z )  is the z transform of u,. 
H(z)  in  (2) is the general pole-zero  model. The  roots of the 

numerator  and  denominator polynomials  are the zeros  and 
poles of the  model, respectively. 

There  are  two special cases  of the model that are of interest: 
1) all-zero model: a& = 0, 1 Q k Q p  
2) all-pole model: bl = 0, 1 Q 1 Q 4. 

The all-zero model is known  in  the statistical literature as the 
moving averuge (MA) model, and the all-pole model is known 
as the autoregressive (AR)  model [ 171. The pole-zero model 
is then  known as the autoregressive  moving  average (ARMA) 
model. In this  paper we shall use the pole-zero  terminology 
since it is more familiar to engineers. 

The major  part of this paper will be  devoted to the all-pole 
model. This has  been,  by far,  the most widely used model. 
Historically, the first use of an all-pole model in the analysis 
of time series is attributed  to Yule [ 11 5 ] in a  paper on  sun- 
spot analysis. Work on  this  subject, as well as on time series 
analysis in general, proceeded vigorously after  1933 when 
Kolmogorov laid a  rigorous foundation  for  the  theory of 
probability. Later  developments  by  statisticians, such as 
Cram& and Wold, culminated  in the parallel and  independent 
work of Kolmogorov [581 and  Norbert Wiener [ 107 I on  the 
prediction  and filtering of stationary time series. For a bibliog- 
raphy on  time series through  the  year  1959, see the en- 
cyclopedic  work edited by Wold [ 1 131.  For a discussion of 
all-pole (autoregressive)  models see,  for  example, [17],   [45],  
[1051,  [112]. 

Much of the  recent work on  system modeling has been done 
in the area of control  theory  under  the  subjects of estimation 
and system identification. Recent survey papers  with exten- 
sive references  are those of ibtrom and  Eykhoff [8] and 
Nieman e t  al. [ 731. The December 1974 issue of the IEEE 
TRANSACTIONS ON AUTOMATIC CONTROL is devoted to  the 
subje8t'af.system  identification.  Another relevant survey paper 
is that of Kailath [ 551 on linear  filtering  theory.  Related books 
are  those of Lee [60], Sage and Melsa [88], and Eykhoff [30]. 

D. Paper  Outline 
Sections 11-V deal exclusively with  the all-pole model. In 

Section 11, the  estimation of model  parameters is derived in 
the time domain  by  the  method of least  squares. The result- 
ing normal  eq,uations are  obtained  for  deterministic as well as 
random signals3 (both  stationary  and  nonstationary). Direct 
and iterative  techniques  are  presented for  the  computation of 
the  predictor coefficients,  and the  stability of the all-pole 
filter H(z)  is discussed. The response of the all-pole filter is 
then analyzed for  two  important  types of input  excitation: a 
deterministic impulse  and  statistical  white noise. 

In Section 111, the all-pole modeling of a signal is derived 
completely in  the frequency domain.  The  method of least 
squares  translates into a  spectral  matching method where the 
signal spectrum is to be matched or fitted by  a model spec- 
trum. This formulation allows one to perform arbitrary 
spectral  shaping  before modeling. This viewpoint has special 
relevance today with the availability of hardware  spectrum 
analyzers  and  fast Fourier  transform  techniques [21].  (We 
point  out  that all-pole modeling by  linear  prediction is iden- 
tical to  the  method of maximum entropy  spectral  estimation 
[181, I961.1 

Section IV gives a  detailed discussion of the advantages and 
disadvantages of the least  squares error  criterion.  The  prop- 
erties of the normalized error are reviewed. Its use is discussed 

'See [SO] for an exposition  of the  terminology  in digital signal 
processing.  See [ 12 1 for a description o f  deterministic and random  signals. 
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in measuring the ill-conditioning of the normal equations,  and 
in  determining an optimal  number of poles. 

Section V discusses the use of linear  prediction  in data com- 
pression.  Alternate representations of the linear predictor are 
presented and their properties under  quantization are dis- 
cussed. Particular  emphasis is  given to  the  quantization  and 
encoding of the reflection (or partial correlation) coefficients. 

Finally,  in  Section VI, a brief discussion of pole-zero model- 
ing is given, with emphasis on  methods presented  earlier for 
the all-pole case. 

11. PARAMETER ESTIMATION 
A .  All-Pole  Model 

In the all-pole model, we assume that  the signal s, is given 
as a  linear combination of past values and  some input U, : 

where G is a gain factor. This model is shown  in Fig. 2 in the 
time and frequency domains. The  transfer  function H(z)  in 
(2) now  reduces to an all-pole transfer  function 

H ( z )  = 
G 

P (5)  

1 + a k z - k  
k = l  

Given a  particular signal s,, the problem is to determine  the 
predictor coefficients a k  and the gain G in  some  manner. 

The derivations will be given using an intuitive  least  squares 
approach, assuming first that s, is a deterministic signal and 
then  that s, is a  sample from a random process. The  results 
are  identical to those  obtained by the  method of maximum 
likelihood [ 61 , [ 74 I ,  [ 7 5 I with  the assumption that  the signal 
is Gaussian [60],  1731. The reader is reminded of the exis- 
tence of more general least  squares methods  such as weighted 
and a priori least  squares [ 161 , [ 901 . 

B. Method of Least Squares 
Here we assume that  the  input u, is totally  unknown, which 

is the case in  many applications,  such as EEG analysis. There- 
fore,  the signal s, can be predicted  only approximately  from 
a  linearly weighted summation of past samples.  Let  this  ap- 
proximation of s, be ?, , where 

P 

Then  the  error  between  the  actual value s, and the predicted 
value ?, is given by 

P 
e ,  = s, - ?, = s, + a k s , - k .  (7) 

k = l  

e ,  is also known as the residual. In  the  method of least 
squares the parameters ak are obtained as a  result of the mini- 
mization of the mean or  total  squared  error with  respect to 
each of the parameters. (Note  that this  problem is identical to 
the problem of designing the  optimal  onestep prediction 
digital Wiener filter [8S] .) 

The analysis will be developed along two lines. First, we 
assume that 8 ,  is a deterministic signal,  and then we  give 

(b) 
Fig.  2. (a) Discrete  all-pole  model in the  frequency  domain. (b) Dis- 

crete  all-pole  model in the  time  domain. 

analogous  derivations assuming that s, is a  sample from a 
random process. 

1)  Deterministic Signal: Denote  the  total squared error by 
E, where 

f P 

The range of the  summation  in (8) and the definition of s, in 
that range is of importance. However, let us first minimize E 
without specifying the range of the  summation. E is mini- 
mized by setting 

From (8) and (9) we obtain  the  set of equations: 

Equations  (1 0) are known  in least  squares  terminology as the 
normal  equations. For any  definition of the signal s,, (10) 
forms a set of p equations in p unknowns which can be solved 
for  the  predictor coefficients { a k ,  1 < k < p }  which minimize 
E in (8). 

The minimum total squared error,  denoted by E p ,  is ob- 
tained by expanding (8) and  substituting  (10). The  result can 
be shown to be 

We shall now specify the range of summation over n in ( 8 ) ,  
(lo),  and (1 1). There are two cases of interest, which will lead 
to  two distinct methods  for  the  estimation of the parameters. 

a) Autocorrelation  method: Here we assume that  the error 
in (8) is minimized over the  infinite  duration -OD < n < O? 
Equations (1 0) and (1 1)  then reduce to 

P 
a k R ( i -  k)= - R ( i ) ,  1 < i < p  (12) 

k =  1 

P 
EP = R(0)  + ak R ( k )  (1 3) 

k = l  
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where 

is the  autocorrelation  function of the signal s,. Note  that 
R(i)  is an even function of i ,  i.e., 

R(- i )  = R ( i ) .  (15) 

Since the coefficients R(i - k) form  what  often is known as 
an  autocorrelation  matrix, we shall call this method  the 
autocorrelation  method. An autocorrelation  matrix is a  sym- 
metric Toeplitz  matrix.  (A  Toeplitz matrix is one where all 
the elements along each diagonal are equal  [42] .) 

In practice, the signal s, is known over only  a  finite  interval, 
or we are  interested in  ,the signal over only a  finite  interval. 
One popular method is to multiply the signal s, by  a window 
function w ,  to  obtain  another signal s; that is zero outside 
someinterval O<n<N- 1: 

snw, ,  O<n<N- 1 

0, otherwise. 
s:, = {  

The  autocorrelation  function is then given by 

N -  1 -i 
R(i)= s ;s ;+i ,  i > O .  (17) 

n=O 

The  shape of the window function w ,  can be of importance. 
The subject is discussed further in  Section 111. 

b )  Covariance  method: In contrast  with  the  autocorrela- 
tion  method,  here we assume that  the  error E in (8) is mini- 
mized over a  finife  interval, say, 0 < n < N - 1. Equations 
(10) and (1  1)  then reduce to 

where 

N -  1 

q ik  = sn-is,-k 
n = o  

is the covariance of the signal s, in the given interval. The 
coefficients qki  in (18)  form a covariance matrix,  and,  there- 
fore, we shall call this  method  the covariance method. From 
(20)  it can be easily shown that  the covariance matrix qik  is 
symmetric, i.e., q i k  = q k i .  However, unlike the  autocorrela- 
tion  matrix,  the  terms along each  diagonal  are not  equal. This 
can be seen by writing from  (20) 

@ + l , k + l  = qik  +s- i - l   s -k-1  - sN-1-iSN-1-k. (21) 

Note from  (21) also that values of the signal s, for - p  < n 4 
N -  1  must be known: a total of p + N  samples. The covari- 
ance method reduces to the  autocorrelation  method as the 
interval  over which n varies goes to infinity. 

2)  Random Signal: If the signal s, is assumed to be  a 
sample of a random process, then  the  error e,  in (7) is also a 
sample of a random process. In the least squares method, we 
minimize the  expected value of the square of the  error. Thus 

( 7 P 
E = & ( e ; ) = &  s,+ C a k s , - k  . (22) 

k ='1 

Applying (9)  to  (22), we obtain  the  normal  equations: 

P 
a k 8 ( S n - k s n - i ) = - 8 ( s , s , - j ) ,  1 < i < p .  (23) 

k = l  

The minimum average error is then given by 

P 
EP = &(si )  + ~k &(s, ~,-k). (24) 

k =  1 

Taking the  expectations in (23)  and  (24) depends on whether 
the process s, is stationary  or  nonstationary. 

a )  Stationary case: For a stationary process s,, we have 

t%(Sn-ksn-i)=R(i-  k) (25) 

where R(i)  is the  autocorrelation of the process. Equations 
(23) and (24)  now  reduce  to  equations identical to  (12)  and 
(13), respectively. The only  difference is that  here  the  auto- 
correlation is that of a stationary process instead of a deter- 
ministic signal. For a stationary (and  ergodic) process the 
autocorrelation can be computed as a time average [ 121. Dif- 
ferent approximations have been suggested in the  literature 
1541 for estimating R(i)  from a finite  known signal s,. One 
such  approximation is given  by (1 7): Using this  estimate in 
the  stationary case gives the  same  solution  for  the coefficients 
ak as the  autocorrelation  method in the  deterministic case. 

b)  Nonstationary case: For a nonstationary process s,, we 
have 

8 ( s n - k s n - i )   = R ( n  - k , n  - i )  (26) 

where R(t ,  t ' )  is the  nonstationary  autocorrelation  between 
times t and t' .  R(n  - k ,  n - i)  is a function of the  time  index 
n.  Without loss of generality, we shall assume that we are in- 
terested  in  estimating the parameters ak at time n = 0. Then, 
(23) and (24)  reduce  to 

P 
E; = R ( O ,  0) + a k R ( 0 ,  k). (28) 

k =  1 

In estimating the  nonstationary  autocorrelation coefficients 
from  the signal s,, we note  that  nonstationary processes are 
not ergodic, and,  therefore,  one  cannot  substitute  the en- 
semble average by  a time average. However, for a  certain class 
of nonstationary processes known as locally  stationaly pro- 
cesses [ 121,  [92],  it is reasonable to estimate  the  autocorrela- 
tion  function with  respect t o  a point  in  time as a short-time 
average. Examples of nonstationary processes that can be 
considered to be locally stationary are  speech  and EEG signals. 

We point  out here that  the covariance method is similar to 
the  method of PronY 7 171 1 where a signal is approxi- 4 usually the estimate given by (17) is divided by N ,  but that  does  not 
mated by the  summation of a  set of  damped  exponentials. affect the solution for the  predictor coefficients. 
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In a  manner  analogous to  the  stationary case, we estimate 
R ( - k ,  - i )  by q j k  in (20).  using this approximation  for  the 
nonstationary  autocorrelation leads to a solution  for  the 
parameters ak in  (27)  that is identical to  that given by (18) in 
the covariance method in the  deterministic case. 

Note  that  for a stationary signal: R ( t ,  t ' )  = R(t  - t ' ) ,  and 
therefore,  the normal equations  (27) and (28) reduce to  (12) 
and (1  3). 

3) Gain  Computation: Since  in the least  squares method we 
assumed that  the  input was unknown,  it does not make much 
sense to  determine a value for  the gain G .  However, there are 
certain  interesting  observations that can be made. 

Equation  (7) can be rewritten as 

Comparing (4)  and  (29) we see that  the  only  input signal u, 
that will result in  the signal s, as output is that where 
Gun = e , .  That is, the  input signal is proportional to  the 
error signal. For any other  input u,, the  output  from  the 
filter H ( z )  in Fig. 2 will be  different from s,. However, if  we 
insist that whatever the  input u,, the energy in  the  output 
signal must  equal that of the original signal s,, then we can at 
least  specify the  total energy  in the  input signal. Since the 
filter H(z)  is fixed, it is clear from  the above that  the  total 
energy  in the  input signal Gun must equal  the  total energy in 
the  error signal, which is  given by E p  in (1  3)  or (1 9),  depend- 
ing on  the  method used. 

Two  types of input  that  are of special interest are: the de- 
terministic  impulse  and stationary white noise. By examining 
the response of the filter H ( z )  to each of these two  inputs we 
shall gain further insight into  the  time  domain properties of 
the all-pole model. The  input gain is then  determined as a by- 
product of an  autocorrelation analysis. 

a) Impulse  input: Let the  input  to  the all-pole filter H(z)  
be an impulse or  unit sample at n = 0, i.e. u, = f i n o ,  where 
6, is the Kronecker delta. The output of the filter H(z)  is 
then its  impulse  response h, ,  where 

P 
h ,  = -  akhn-k + G6,o.  (30) 

&= 1 

The  autocorrelation k(i) of the impulse  response h ,  has an 
interesting  relationship to  the  autocorrelation R(i )  of the 
signal S, . Multiply (30) by h n - i  and  sum over all n .  The re- 
sult can be  shown to  be [ 101,  [62] : 

Given our  condition  that  the total energy  in h,  must  equal 
that  in s,, we must have 

k ( 0 )  = R(0)  (33) 

since the  zeroth  autocorrelation coefficient is equal to  the 
total energy in the signal. From  (33)  and  the similarity be- 
tween (12) and  (31) we conclude that  [62] 

k ( i ) = R ( i ) ,  o < i < p .  (34) 

This says that  the first p + 1 coefficients of the  autocorrelation 
of the impulse response of H ( z )  are identical to  the corre- 
sponding  autocorrelation coefficients of the signal. The  prob- 
lem of linear prediction using the  autocorrelation  method can 
be stated in  a new way as follows. Find a  filter of the  form 
H ( z )  in (5) such  that  the first p + 1 values of the autocorrela- 
tion of its impulse response are equal to the first p + 1 values 
of the signal autocorrelation,  and  such  that  (31) applies. 

From  (32),  (34), and (13),  the gain is equal to 

P 
G Z  = E p  =R(O) + a k R ( k )  

k =  1 

where G Z  is the  total energy in  the  input Gfino. 
b )  White  noise  input: Here the  input u, is assumed to be 

a  sequence of uncorrelated samples (white noise) with  zero 
mean and unit variance, i.e., b(u,) = 0, all n ,  and &(#,urn)= 
6,. Denote the  output of the  filter  by 2, . For a  fixed  filter 
H(z) ,  the  output ?, forms a stationary  random process: 

P 
A 
S, = - ak?n-k + G u n .  (36) 

k =  1 

Multiply (36) by ?,-i and take  expected values. By noting 
that u,  and ?,-i are uncorrelated  for i > 0, the result %an be 
shown [171  to  be identical to  (31) and (32), where R ( i )  = 
b( ?,  ?, - i) is the  autocorrelation of the  output ?,. There- 
fore,  (31) and (32) completely specify an all-pole random 
process as well. Equations  (31) are known in the statistical 
literature as the Yule-Walker equations [ 171,  [98], [ 11  51. 

For  the  random case we require that  the average energy (or 
variance) of the  oEtput ?, be  equal to  the variance of the orig- 
inal signal s,, or R(0)  = R(O), since the  zeroth  autocorrelation 
of a  zero-mean random process is the variance. By a  reasoning 
similar to  that given in the previous section, we conclude that 
(34)  and  (35) also apply for  the  random case. 

From  the preceding, we see that  the relations  linking the 
autocorrelation coefficients of the  output of an all-pole filter 
are the same whether  the  input is a single impulse or white 
noise. This is to be expected since both  types of input have 
identical autocorrelations  and, of course,  identical flat  spectra. 
This dualism between the  deterministic impulse and  statistical 
white noise is an intriguing one.  Its usefulness surfaces very 
elegantly in  modeling the speech process, as in Fig. 1, where 
both unit  impulses as well as white noise are  actually used to  
synthesize speech. 

C.  Computation of  Predictor  Parameters 
1 )  Direct  Methods: In each of the  two  formulations of 

linear  prediction  presented in  the previous section,  the pre- 
dictor coefficients ak ,  1 < k < p ,  can be  computed by solving 
a  set of p equations with p unknowns. These equations are 
(1  2)  for  the  autocorrelation  (stationary)  method and (1 8) for 
the covariance (nonstationary)  method.  There exist several 
standard  methods  for performing the necessary computations, 
e.g., the Gauss reduction  or elimination method and the  Crout 
reduction  method [49].  These general methods require 
p3/3 + O ( p z )  operations  (multiplications or divisions) and p z  
storage locations. However, we note  from  (1  2) and (1 8) that 
the  matrix  of coefficients  in  each case is a covariance matrix. 
Covariance matrices  are symmetric and  in general positive 
semidefinite,  although in  practice they are usually positive 
definite.  Therefore,  (12) and (18) can be solved more ef- 
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ficiently  by the  squareqoot  or Cholesky decomposition 
method  [311,  1391,  (591,  [1101. This method requires 
about half the  computation p 3 / 6  + O ( p 2 )  and about half the 
storage p2/2 of the general methods. The  numerical  stability 
properties of this method are well understood [ 1091, [ 11 11 ; 
the  method is considered to be quite  stable. 

Further  reduction  in storage  and computation  time is pos- 
sible in solving the  autocorrelation normal equations  (12) be- 
cause of their special form.  Equation  (12) can be expanded 
in  matrix  form as 

(37) 

Note that  the p X p autocorrelation  matrix is symmetric  and 
the  elements along any diagonal are identical (i.e., a  Toeplitz 
matrix). Levinson [61] derived an elegant recursive procedure 
for solving this type of equation. The  procedure was later  re- 
formulated by Robinson [85 ] .  Levinson’s method assumes 
the column  vector on the right hand side of (37) to be  a gen- 
eral column vector. By making use of the  fact  that this col- 
umn vector comprises the same  elements found in the  auto- 
correlation matrix,  another  method  attributed  to Durbin [25] 
emerges which is twice as fast as Levinson’s. The  method 
requires  only 2 p  storage locations and p 2  + O ( p )  operations: 
a big saving from  the more general methods. Durbin’s re- 
cursive procedure can be specified as follows: 

Equations  (38b)-(38d) are solved recursively for i = 1, 2, 
* - , p .  The final solution is  given by 

ai = ai(P), 1 G ~ G P .  W e )  

Note  that  in  obtaining  the  solution  for a  predictor of order p ,  
one actually computes  the  solutions  for all predictors of order 
less than p .  It has  been reported  [78]  that this solution is 
numerically relatively unstable. However, most researchers 
have not  found this to be a  problem in practice. 

It should be emphasized that,  for many applications,  the 
solution  of  the normal equations (1 2)  or (1 8)  does not  form 
the major computational  load. The computation of the  auto- 
correlation or covariance coefficients  require pN operations, 
which can dominate  the  computation  time if N >> p ,  as is 
often  the case. 

The  solution to  (37) is unaffected if all the  autocorrelation 
coefficients  are scaled by a constant. In particular, if all R ( i )  
are normalized by dividing by R(O) ,  we have what  are known 

as the normalized  autocorrelation  coefficients r ( i ) :  

(39) 

which have the  property  that I r ( i ) l <  1. This can be  useful in 
the  proper application af scaling to a fixed point  solution  to 
(37). 

A byproduct of the  solution  in  (38) is the  computation of 
the minimum total  error Ei at every step.  It can easily be 
shown  that  the minimum error Ei decreases (or remains the 
same) as the  order of the  predictor increases [ 6 1 ] . Ei is never 
negative, of course, since it is a  squared error.  Therefore, we 
must have 

0 < Ei Q Ei-1 ,  Eo = R ( 0 ) .  (40) 

If the  autocorrelation coefficients are normalized as in (39), 
then  the minimum error Ei is also divided by R ( 0 ) .  We shall 
call the resulting quantity  the normalized  error Vi: 

From  (40) it is clear that 

O G V i G 1 ,  i > O .  (42) 

Also, from  (38d) and (41),  the final normalized error V p  is 

V p  = n (1 - k ; ) .  (43) 
P 

i= 1 

The  intermediate  quantities k t ,  1 < i < p ,  are known as the 
reflection  coefficients. In the statistical literature,  they are 
known as partial  correlation  coefficients [ 61, [ 171. ki can be 
interpreted as the (negative)  partial  correlation  between s, and 
S , + i  h ~ l d i n g s , , ~ ,  * * * , s , + i m 1  fixed.  The use of the  term “re- 
flection coefficient” comes from transmission line  theory, 
where ki can be  considered as the reflection  coefficient at  the 
boundary  between  two sections  with  impedances Z i  and Zi+ 1 . 
ki is then given by 

The transfer  function H(z)  can then be  considered as that of a 
sequence of these  sections  with impedance ratios given from 
(44)  by 

The same explanation can be given for any type  of  situation 
where there is plane wave transmission with normal  incidence 
in a  medium consisting of a  sequence of sections or slabs with 
different impedances. In the case of an acoustic tube  with p 
sections of equal thickness, the impedance  ratios  reduce to  the 
inverse ratio of the consecutive cross-sectional areas. This 
fact  has been used recently  in speech analysis [ 101 , [521, 
[97]. Because of the more  familiar “engineering interpreta- 
tion’’ for ki ,  we shall refer to  them in  this  paper as reflection 
coefficients. 

2)  Iterative  Methods: Beside the direct methods  for  the 
solution of simultaneous  linear equations,  there exist  a number 
of iterative methods. In these methods, one begins by an 
initial guess for  the  solution. The solution is then  updated by 
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adding  a correction  term  that is usually based on  the gradient 
of some error  criterion. In general,  iterative methods  require 
more computation  to achieve a desired degree of convergence 
than  the direct methods. However, in  some applications 
[ 1001 one  often  has a  good  initial guess, which might lead 
to the  solution  in  only a few iterations. This can be  a big 
saving over direct methods if the  number of equations is large. 
Some of the iterative methods are the  gradient  method,  the 
steepest  descent method, Newton’s method, conjugate  gradient 
method and the  stochastic  approximation  method [ 811 , 
[1081. 

Up till now we have assumed that  the whole signal is given 
all at  once.  For certain real time applications it is useful to 
be able to perform the  computations as the signal is coming in. 
Adaptive schemes  exist  which update  the  solution based on 
every new observation of the signal [ 1061.  The  update is 
usually proportional to the difference  between the new ob- 
servation  and the predicted value given the present solution. 
Another application for adaptive  procedures is in  the process- 
ing of very long  data records,  where the  solution might con- 
verge long  before all the  data is analyzed. It is worth  noting 
that Kalman filtering notions [ 561 are very useful in  obtaining 
adaptive solutions [ 601 . 

3) Filter Stability:  After the  predictor parameters are com- 
puted,  the  question of the  stability of the resulting  filter 
H(z)  arises. Filter  stability is important  for  many applications. 
A causal all-pole filter is stable if all its poles lie inside the  unit 
circle (in which case it is also a  filter  with  minimum  phase). 
The poles of H ( z )  are simply the  roots of the  denominator 
polynomial A ( z ) ,  where 

D 

k= 1 

and 

G 
H ( z )  = - (47) 

A ( z )  is also known as the inverse filter. 
If the coefficients R(i)  in  (12) are positive definite  [79] 

(which is assured if R ( i )  is computed  from a nonzero signal 
using (1 7)  or  from a positive definite spectrum’ ), the  solution 
of the  autocorrelation  equation  (12) gives predictor parame- 
ters which guarantee  that all the  roots of A ( z )  lie  inside the 
unit circle, i.e., a stable H ( z )  [421,  [85],  [104]. This result 
can also be obtained  from  orthogonal polynomial theory.  In 
fact, if one  denotes  the inverse filter  at  step i  in iteration  (38) 
by A i ( z ) ,  then it can, be shown  that  the polynomials Ai(z)for 
i = 0, 1, 2, * * , form  an  orthogonal set over the  unit circle 
[ X I ,  [421,  [931: 

n, m = 0, 1 , 2 ,  * (48) 

where E,, is the minimum error  for  an  nth  order  predictor,  and 
P(w) is any positive definite  spectrum whose Fourier trans- 
form results in  the  autocorrelation coefficients R(i)  that are 
used in  (1  2).  The recurrence relation  for these  polynomials is 

frequencies. 
spectrum  that  can  be  zero at most at a countable set of 

as follows: 

A i ( z )  = A i -   ( z )  + ki  z-’Ai-  (z-’  ) (49) 

which is the same as the recursion  in (38c). 
The positive definiteness of R( i )  can often be lost if one uses 

a small word length to represent R(i) in  a computer. Also, 
roundoff  errors can cause the  autocorrelation  matrix to be- 
come  illconditioned.  Therefore,  it is often necessary to check 
for  the  stability of H ( z ) .  Checking if the  roots  of A ( z )  are 
inside the  unit circle is a  costly  procedure that is best avoided 
One method is to check if all the successive errors are positive. 
In fact,  the  condition Ei > 0, 1 Q i Q p ,  is a necessary and 
sufficient condition  for  the stability of H ( z ) .  From  (38d)and 
(40)  it is clear that an equivalent condition  for  the stability 
of H(z)  is that 

I k i ( < 1 ,  1 Q i Q p .  (50) 

Therefore,  the recursive procedure (38) also  facilitates the 
check for  the  stability of the  filter H ( z ) .  

The  predictor parameters  resulting from a solution to  the 
covariance matrix  equation  (1 8)  cannot in general be guaran- 
teed to  form a stable  filter.  The  computed  filter  tends to be 
more stable as the  number of signal samples N is increased, 
i.e., as the covariance matrix approaches an  autocorrelation 
matrix. Given the  computed  predictor parameters, it is useful 
to be able to test  for  the stability of the filter H ( z ) .  One 
method is to compute  the reflection  coefficients ki from  the 
predictor parameters by a backward recursion,  and then check 
for stability using (SO). The recursion is as follows: 

ki = ai ( 0  

where the  index i  takes values p ,  p - 1, * * * , 1 in  that  order. 
Initially a ( p )  = ai,  1 Q j Q p .  It is interesting to  note  that this 
method (or checking the  stability of H ( z )  is essentially the 
same as the Lehmer-Schur method  [811  for testing whether 
or  not  the zeros of a  polynomial lie inside the  unit circle. An 
unstable  filter can be made stable by  reflecting the poles 
outside  the  unit circle inside [ 101,  such  that  the magnitude of 
the  system  frequency response  remains the  same. Filter in- 
stability  can often be avoided by adding a very small number 
to the diagonal elements in the covariance matrix. 

A question always arises as to whether to use the  auto- 
correlation method  or covariance method in  estimating the 
predictor parameters. The covariance method is quite general 
and can be used with no restrictions. The  only problem is that 
of the stability of the resulting  filter,  which is not a severe 
problem  generally. In  the autocorr-elation method,  on  the 
other  hand,  the  filter is guaranteed to be stable,  but problems 
of parameter accuracy can arise because of the necessity of 
windowing (truncating)  the  time signal. This is usually a  prob- 
lem if the signal is a portion of an impulse response. For exam- 
ple, if the impulse response of an all-pole filter is analyzed by 
the covariance method,  the filter  parameters can be  computed 
accurately from  only. a finite  number of samples of the signal. 
Using the  autocorrelation  method,  one  cannot  obtain  the  exact 
parameter values unless the whole infinite impulse  response is 
used in  the analysis. However, in  practice, very good approxi- 
mations can be obtained by truncating  the impulse response at 
a point where  most of the decay of the response  has  already 
occurred. 
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111. SPECTRAL ESTIMATION 
In  Section 11, the  stationary  and  nonstationary  methods of 

linear  prediction were derived from a time  domain  formula- 
tion. In this  section we show that  the same normal  equations 
can be derived from a frequency  domain  formulation. It will 
become clear that linear  prediction is basically a correlation 
type of analysis which can be approached  either  from  the time 
or  frequency  domain.  The insights gained from  the  frequency 
domain analysis will lead to new applications for linear pre- 
dictive analysis. This section  and the following are based 
mainly on references [ 621 -[ 641 . 

A .  Frequency  Domain  Formulations 
I )  Stationary  Case: The  error e ,  between the  actual signal 

and the predicted signal is given by (7). Applying the z  trans- 
form  to (7), we obtain 

E(z) = [ 1 + & akz-.] S(z)  = A ( z )  S ( z )  (52) 
P 

where A ( z )  is the inverse filter  defined  in (46), and E(z)  and 
S ( z )  are the z transforms of e ,  and s,, respectively. Therefore, 
e ,  can be viewed as the result of passing s, through  the inverse 
filter A(z). Assuming a  deterministic signal6 s,, and  applying 
Parseval’s theorem,  the  total error to be minimized is given by 

where.E(eiW) is obtained by evaluating E(z)  on  the  unit circle 
z = e lw.  Denoting the  power  spectrum of the signal s, by 
P ( w ) ,  where 

P ( W )  = I s(eiw) 1’ (54) 

we have from (52H54) 

Following the same procedure as  in  Section 11, E is minimized 
by applying (9) to ( 5 5 ) .  The result can be shown [64] to be 
identical to the  autocorrelation  normal  equations (12), but 
with the  autocorrelation R(i) obtained  from  the signal spec- 
trum flu) by an inverse Fourier transform 

l f f  
R ( i )  = 211 P(w) cos ( i w )   d w .  (56) 

Note that in (56) the cosine transform is adequate since P ( w )  
is real and even. The minimum  squared error Ep can be ob- 
tained by substituting  (12) and (56) in ( 5 5 ) ,  which results  in 
the same equation as in (1 3). 

2) Nonstationury  Case: Here the signal s, and  the  error e ,  
are assumed to be nonstationary. If R ( t ,  I ) )  is the  nonstation- 
ary autocorrelation of s,, then we define the  nonstationary 
two-dimensional (2-D) spectrum Q(u, 0’) of s, by [ 121, [ 641, 
[671,[791 

Q(w, a’) = R ( t ,  t ’ )  exp [ - j (wt-  aft‘)] . (57) 
OD- 

t’=-..  t=-- 

results. 
6A similar development assuming a random signal gives the  same 

R ( t ,  t ’ )  can then be recovered from Q(w, w’ )  by an inverse 
2-0 Fourier  transform 

R(t ,  I ) )  = (k)2 j-1 l1 Q(w, w‘)  exp [j(wt - oft‘)] d w   d o ’ .  

(58) 

As in the time  domain formulation, we are interested in mini- 
mizing the  error variance for  time n = 0, which is now given 
by [641 

Applying (9) to (59) results in equations identical to the  non- 
stationary  normal  equations (27), where R(t ,  t ’ )  is now defined 
by (58). The minimum  error is then obtained  by substituting 
(27) and (58) in (59). The  answer is identical to (28). 

B. Linear  Predictive  Spectral Marching 
In this  section we shall examine  in  what  manner the  ggnal 

spectrum P(w) is approximate? by the all-pole model spec- 
trum, which we shall denote by P ( w ) .  From ( 5 )  and (47): 

From (52) and (54) we have 

I E(e iW)  1’ 
I A(e iw)  1’ ‘ 

P ( w )  = 

By comparing (60) and (61) we see that if P ( w )  is being 
modeled by P ( w ) ,  then  the  error power spectrum I E ( e I W )  1’ is 
being modeled  by  a flat  spectrum  equal  to G’. This  means 
that  the  actual  error signal e ,  is being approximated by  an- 
other signal that  has a flat  spectrum, such as a unit impulse, 
white  noise, or  any  other signal with  a flat  spectrum.  The 
filter A ( z )  is sometimes  known as a  “whitening filter” since it 
attempts to produce  an  output signal e ,  that is white, i.e., has 
a flat spectrum. 

From (53), (60), and (61), the  total  error can be written as 

Therefore, minimizing the  total  error E is equivalent to the 
minimization of the  integrsted  ratio of the signal spectrum 
P ( w )  to  its  approximation P ( w ) .  (This interpretation of the 
least squares error was proposed in a classic paper by  Whittle 
[ 1031 . An equivalent formulation using maximum  likelihood 
estimation has been given by Itakura [SO], [ 5 1 1  .) Now, we 
can back up and restate  the problem of linear prediction as 
follows. Given so2e  spectrum P(w) ,  we  wish to model it by 
another  spectrum P ( w )  such that  the integrated ratio between 
the  two  spectra as  in (62) is minimized. The  parameters of the 
model spectrum are computed  from  the  normal  equations (1 21, 
where the needed autocorrelation coefficients R ( i )  are easily 
computed  from P ( w )  by  a simple Fourier transform. The gain 
factor G is obtained by equating  the  total energy in  the  two 
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Fig. 3. A 28-pole fit  to an FFT-computed signal spectrum.  The signal 
was  sampled at 20 kHz. 

spectra, i.e., i ( 0 )  =R(O), where 

A I n  
R ( i )  = - 25r 1, ?(a) cos ( i w )   d w .  (63) 

Note  that Rh(i) is the  autocorrelation of the impulse  response 
of H ( z ) ,  which is  given by (31)  and  (32). As then,  the gain is 
computed  from  (35). 

The manner  in which the model spectrum p(w) approximates 
P(w) is largely reflected in the relation  between the  yrrespond- 
ing autocorrelation functio%s. From  (34), we have R ( i )  = R ( i ) ,  
0 < i < p .  Since P(w) and P(w) are Fourier  transforms of R ( i )  
and Rh(i), respectively, it follows that increasing the value of 
the  trder of the model p increases the rangeAover which R ( i )  
and R ( i )  are  equal, rEsulting in  a better  fit of P(w) to P ( w ) .  In 
the  limit, a s p  -+ 00, R ( i )  becomes  identical to R(i )  for all i ,  and 
hence the  two  spectra become  identical: 

?(a) = ~ ( w ) ,  as p +. 00. (64) 

This statement says that we can approximate  any  spectrum 
arbitrarily closely by an all-pole model. 

Another  important conclusion is that since linear  predictive 
analysis can be viewed as  a  process of spectrum  or  autocorrela- 
tion matching, one  must be careful  how to estimate  the spec- 
trum P ( w )  or  the corresponding autocorrelation  that is to be 
modeled. Since the signal is often weighted or windowed' be- 
fore  either  the  autocorrelation  or  the  spectrum is computed,  it 
can be quite  important  to properly  choose the  type and width 
of the  data window to be used. The  choice of window de- 
pends very much  on  the  type of signal to be  analyzed. If the 
signal can be  considered to be stationary  for a  long  period of 
time  (relative to  the effective  length of the system impulse 
response), then a  rectangular  window suffices. However, for 
signals that result from systems that  are varying relatively 
quickly,  the  time of analysis must necessarily be limited. For 
example,  in many  transient speech sounds,  the signal can be 
considered stationary  for a duration of only  one  or  two  pitch 
periods. In that case a  window  such as Hamming or Hanning 
[ 141 is more  appropriate. See [ 131, [ 141, [ 261, [ 541, [ 641, 
[ 991, [ 1011 for  more  on  the issue of windowing and spectral 
estimation in general. 

An example of linear  predictive (LP) spectral estimation is 
shown  in  Fig. 3, where the original spectrum P ( o )  was ob- 
tained  by computing  the fast Fourier  transform  (FFT) of a 
20-ms, Hamming windowed, 20-kHz sampled speech signal. 

'Note that here we are discussing datu windows  which are applied 
directly t o  the signal, as opposed to  log windows,  which statisticians 
have traditionally  applied to  the  autocorrelation. 

The speech sound was the vowel [z] as in the word "bat." 
The harmonics due  to  the periodicity of the sound  are  evident 
in the  FFT  spectrum. Fig. 3 also shows a 28-pole fit ( p  = 28) 
to  the signal spectrum.  In this case the  autocorrelation co- 
efficients  needed to solve the normal equations  (1 2) were com- 
p e d  directly from  the  time signal. The all-pole spectrum 
P ( o )  was computed  from  (60) by dividing GZ by the magni- 
tude squared of the  FFT of the sequence: l k a l ,  uz , * * , a p .  
Arbitrary frequency resolution in  computing P ( w )  can be ob- 
tained  by simply appending  an  appropriate  number of zeros to 
this  sequence  before  taking the  FFT. An alternate  method of 
computing p(w) is obtained  by rewriting (60) as 

GZ 

p(O) + 2 p ( i )  cos (iw) 
P(w) = 

P 

i=1 

where 
p-i 

k =O 
p(i) = akok+i, uo = 1, O <  i <  p 

is the  autocorrelation of- the impulse  response of 
filter A ( z ) .  From  (65), p(w) can  be computed by dividing G2 
by the real part of the  FFT of the sequznce: p(O), 2p(l) ,  
2p(2), . . , 2p(p).  Note  that  the slope of P(w) is always  zero 
a t o = O a n d w = n .  

Another  property of P(w) is obtained by  noting that  the 
minimum error E ,  = GZ, and,  therefore,  from  (62) we have 

(This  relation is a special case of a more general  result (48) re- 
lating the  fact  that  the polynomials A o ( z ) ,  A 1 ( z ) ,  * * * , 
A p ( z ) ,  . . * , form a complete set of orthogonal polynomials 
with weight P ( w ) . )  Equation  (67) is true for all values of p .  In 
particular, it is true as p -+ 00, in which case from  (64) we see 
that  (67) becomes an  identity.  Another  important case where 
(67) becomes an identity is when P(w) is an all-pole spectrum 
with p o  poles, then P ( w )  will be identical to P(w) for all 
p > p o .  Relation (67) will be  useful  in discussing the proper- 
ties of the  error measure in Section IV. 

Thz transfer functions S ( z )  and H ( z )  corresponding to P ( w )  
and P(wj are also related.  It  can be shown [ 621 that as p +. 0 0 ,  
H ( z )  is given by 

N-1 

k = l  

where h,(n), 0 < n < N - 1, is the minimum phase sequence 
corresponding to s,, 0 < n < N - 1. Note that  the minimum 
phase sequence is of the same length as the original signal. 
Fig. 4  shows  a signal (N = 256) and its  approximate minimum 
phase counterpart,  obtained by  first  performing  a LP analysis 
for p = 250, and then  computing  the sequence h ( n )  by  long 
division. 

C. Selective  Linear  Prediction 
The major point of the previous  section was that LP analysis 

can be regarded  as  a method of spectral modeling. We had 
tacitly assumed that  the model spectrum spans the same fre- 
quency range as the signal spectrum. We now generalize the 
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(b) 
Fig. 4. (a) A  256Bample  windowed  speech signal. (b) The correspond- 

ing approximate  minimum phase sequence  obtained  using a linear 
predictor of order p = 250. 

FREQUENCY ( k H z 1  

Fig. 5. Application of selective linear prediction to  the same signal 
spectrum as in Fig. 3, with  a 14-pole  fit to the 0-5 kHz region and a 
5-pole fit to the 5-10 kHz region. 

LP spectral  modeling method to  the case where we wish to  fit 
only  a selected portion of a given spectrum. 

Suppose we wish to model  the  spectrum P(w) only in the 
region* w, < w < wp by an all-pole spectrum given by  (60). 
Call the signal spectrum  in  that region P’(w), In  order  to com- 
pute  the parameters of the model spectrum P(w), we first per- 
form a  linear  mapping of the given region onto  the  upper half 
of the  unit circle in  the z plane.  This can be  accomplished  by 
the mapping w’ = n(w - oa)/(op - ma), so that  the given re- 
gion is mapped onto 0 < o’ < A. In  addition,  let f ” ( - ~ ’ )  = 
F(w’ )  define the  spectrum over the lower half of the  unit 
circle. The  model  parameters are then  computed  from  the 
normal  equations (1  2), where the  autocorrelation coefficients 
are obtained by a Fourier transform  with P’(w’) replacing 
P(w) and w’ replacing w in (56). 

Selective linear prediction  has had  applications  in  speech 
recognition and speech compression [63]. An example of its 
usage is shown in Fig. 5.  For speech  recognition  applications, 
the 0-5 kHz region is more  important  than  the 5-10 kHz. 
Even when the 5-10 kHz region is important,  only a  rough 
idea of the shape of the  spectrum is sufficient. In Fig. 5 ,  the 
signal spectrum is the same  as  in Fig. 3. The 0-5 kHz region is 
modeled by a 14-pole spectrum, while the 5-10 kHz region is 
modeled independently by  only  a 5-pole model. 

An important  point, which should be clear by now, is that 
since we assume the availability of the signal spectrum P(w), 
any desired frequency shaping or scaling can be performed di- 
rectly on  the signal spectrum before  linear  predictive  modeling 
it3 applied. 

*The remainder of the  spectrum is simply  neglected. 

D.  Modeling  Discrete  Spectra 
Thus far we have assumed that  the  spectrum P ( o )  is a con- 

tinuous  function of frequency. More often, however, the 
spectrum is known  at  only a finite  number of frequencies. For 
example, FFTderived spectra and those obtained  from  many 
commercially available spectrum analyzers have values at 
equally spaced frequency points. On the  other  hand, filter 
bank  spectra, and,  for  example, third-octave band spectrum 
analyzers have values at frequencies that are not necessarily 
equally  spaced. In order  to be able to model  these  discrete 
spectra,  only  one change in our analysis need be made.  The 
error measure E in (62) is defined as a summation instead of 
an integral. The rest of the analysis remains the same except 
that  the  autocorrelation coefficients R ( i )  are now  computed 
from 

1 M-1 
R ( i )  = - P(w,) cos (iw,) (69) 

M m = 0  

where M is the  total  number of spectral points  on  the  unit 
circle. The frequencies w, are those  for which  a spectral 
value exists, and  they need not be equally  spaced. Below  we 
demonstrate  the application of LP modeling for filter bank 
and  harmonic spectra. 

Fig. 6(a)  shows  a typical 14-pole fit to a spectrum of the 
fricative [SI that was FFT  computed  from  the  time signal. 
Fig. 6(b) shows a similar fit t o  a  line spectrum  that is typical of 
filter bank  spectra. What we have actually  done  here is t o  
simulate  a  filter  bank  where the  filters are linearly spaced  up 
to 1.6 kHz and logarithmically spaced thereafter.  Note  that 
the all-pole spectrum  for  the simulated  filter  bank is  remarkably 
similar to  the  one in the  top figure, even though  the  number of 
spectral points is much smaller. 

The dashed curve in Fig. 7(a) is a 14-pole spectrum. If one 
applied LP analysis to this spectrum,  the all-pole model  for 
p = 14 would be identical to the dashed spectrum.  The situa- 
tion  is  not so favorable for discrete  spectra.  Let us assume that 
the dashed spectrum corresponds to  the transfer function of a 
14-pole  filter. If this  filter is excited  by  a  periodic  train of im- 
pulses with  fundamental  frequency F o ,  the  spectrum of the 
output signal will be a  discrete  line spectrum with spectral 
values only at  the  harmonics  (multiples of F o ) .  The line spec- 
trum  for Fo = 3  12 Hz is shown in Fig. 7(a). Note  that  the 
dashed spectrum is an envelope of the  harmonic  spectrum. 
The result of applying  a 14-pole  LP analysis to  the  harmonic 
spectrum is shown as the solid curve in Fig. 7(a). The dis- 
crepancy  between the  two all-pole spectra is obvious. In gen- 
eral, the  types of discrepancies that can occur  between  the 
model and original spectra  include merging or splitting of pole 
peaks, and increasing or decreasing of pole  frequencies and 
bandwidths. Pole movements  are generally in the direction of 
the nearest  harmonic. As the  fundamental  frequency de- 
creases, these  discrepancies decrease, as shown  in Fig. 7(b)  for 

It is important  to  note in Fig. 7 that  the dashed curve is  the 
only possible 14-pole spectrum  that coincides  with the line 
spectrum  at  the harmonics.’ It is significant that  the all-pole 
spectrum resulting from LP modeling does  not yield the spec- 
trum we desire. The  immediate reason for this is that  the solu- 
tion  for  the  model parameters from ( 1  2) depends  on  the values 
of the signal autocorrelation, which for  the periodic signal are 

Fo = 156 HZ. 

greater than  twice the  number of poles  in  the  filter. 
91n general this is true only  if the  period  between  input  impulses is 
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Fig. 6. Application of LP modeling to a filter bank spectrum. (a)  A 

fdter bank spectrum. 
14-pole  fit to the original spectrum. (b)  A 14-pole  fit to the simulated 
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Fig. 7. Application of LP modeling to harmonic  spectra. Dashed 

curve: 14-pole fdter  spectrum. Vertical lines:  Corresponding har- 
monic  spectrum  for  (a) and (b).  (a) F, = 312 Hz. (b) Fo = 1 5 6  Hz. 
Solid  curve:  14-pole tit to the discrete  harmonic  spectrum.  (For  dis- 
play purposes,  the  energy  in the .model  spectrum  (solid  curve) was 
set equal to the  energy in the  fdter  spectrum  (dashed  curve).) 

different from  that  for  the single impulse  response. However, 
the major  underlying  reason lies in  the  properties of the  error 
measure used. This is the  topic of the  next section. 

TV. ERROR ANALYSIS 
An important aspect of any fitting  or matching procedure is 

the  properties of the  error measure that is employed, and 
whether those properties are commensurate  with  certain ob- 
jectives. In this section we shall examine the  properties of the 
error measure used in LP analysis and we shall discuss its 

strengths  and weaknesses in order to be able to fully  utilize its 
capabilities. The analysis will be restricted to  the  stationary 
(autocorrelation) case, although  the conclusions can be ex- 
trapolated  to  the  nonstationary (covariance) case. 

The  error measure used in  Section 11-B to  determine  the pre- 
dictor  parameters is the least  squares error measure due  to 
Gauss, who  first reported  on  it in the early 1800's. This error 
measure has been used extensively since then, and is quite well 
understood.  Its major asset is its  mathematical  tractability. 
Its main characteristic is that  it  puts great  emphasis on large 
errors  and  little emphasis on small errors. Purely from  the 
time  domain,  it is often difficult to say whether such an  error 
measure is a desirable one  or  not  for  the problem at  hand. 
Many would probably agree that  it  does  not really matter 
which error measure one uses as long as it is a  reasonable func- 
tion of the magnitude of the  error  at each point.  For  the linear 
prediction  problem, we are fortunate  that  the  error measure 
can also be written in the  frequency  domain  and can be in- 
terpreted as  a  goodness of fit between  a given signal spectrum 
and a  model spectrum  that  approximates  it.  The -insights 
gained in the  frequency  domain should  enhance our under- 
standing of the least squares error  criterion. 

A.  The Minimum Error 
For each value of p ,  minimization of the error  measure E in 

(62) leads to  the minimum error E p  in (13), which is given in 
terms of the  predictor  and  autocorrelation coefficients. Here 
we derive an expression for E p  in the  frequency  domain, which 
will help us determine some of its properties. Other  properties 
will be discussed when we discuss the normalized minimum 
error. 

Let 

be the  zeroth coefficient (quefrency) of the  cepstrum (inverse 
Fourier transform of log spectrum)  [381,  [77] corresponding 
to p(w). From  (60),  (70) reduces to 

A ( z )  has all its zeros inside the  unit circle. Therefore,  the inte- 
gralin(7l)isequaltozero  [641, [ 6 9 ] ,  [103].  SinceG' = E p ,  
we conclude from  (7 1) that 

E, = e',. (72) 

From  (72)  and (701, E, Can>e interpreted as the  geometric 
mean of the  model  spectrum P(w). From  (40) we know  that 
Ep decreases  as p increases. The minimum occurs as p +. m, 

and is equal to 

Emin = E ,  = e', (73) 

where co is obtained by substituting P(w) for B(o) in(70).1° 
Therefore,  the  absolute  minimum  error is a function of P ( o )  
only,  and is equal to  its  geometric  mean, which is always posi- 
tive for positive definite spectra." This is a curious result, 
because it says that  the minimum error can  be nonzero even 

" E -  is equal to zero only  if P ( w )  IS zero over a  noncountable  set 
l o  If P(w) is a p ,  -pole  spectrum  then E p  = Emin  for all p 3 p ,  . 

of frequencies (i.e., over a line  segment). In that case, the signal is 
perfectly  predictable and the prediction error is zero [ 107 1.  
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when the matching spectrum P(w) is identical to  the  matched 
spectrum P(w). Therefore, although E p  is a  measure of fit of 
the model spectrum to the signal spectrum,  it is not an abso- 
lute  one.  The measure is always relative to Emin. The  nonzero 
aspect of Emin can be understood by realizing that,  for any p ,  
Ep is equal to  that  portion of the signal energy that is not pre- 
dictable by a pth  order  predictor.  For example, the impulse 
response of an all-pole filter is perfectly predictable except for 
the initial nonzero value. It is the energy in  this  initial value 
that shows up  in Ep.  (Note  that in the covariance method  one 
can choose the region of analysis to exclude the initial value, 
in which case the  prediction  error would be zero  for  this 
example.) 

h 

B. Spectral  Matching  Properties 
The LP error measure E in (62)  has  two major properties:” 

a  global property and  a  local property. 
1) GlobalProperty: Because the  contributions  to  the  total 

error are  determined  by the ratio of the  two spectra, the 
matching process should perform uniformly over the whole 
frequency range, irrespective of the general shaping of the 
spectrum. 

This is an important  property for  spectral estimation be- 
cause it makes  sure that  the spectral match  at frequencies  with 
little energy is just as good,  on  the average, as the  match  at 
frequencies  with high energy (se: Fig. 3). If the  error measure 
had been of the  form I P(w) - P(w) I dw, the spectral matches 
would have been best at high energy frequency  points. 

2)  Local  Property: This property deals with how  the  match 
is done  in each small region^  of the  spectrum. 

Let  the  ratio of P ( o )  to P ( o )  be given by 

(74) 

Then  from  (67) we have 

E(w) can b,” interpreted as the  “instantaneous  error” between 
P(w) and P(w) at  frequency w .  Equation  (75) says that  the 
arithmetic mean of E ( o )  is equal to 1, which means that  there 
are values of E(w) greater  and less than 1  such that  the average 
is equal to l.13 In  terms of the  two spectra, this means that 
P(w) will be greater than $(a) in  some regions and less in 
others  such  that  (75) applies. However, the-contribution to 
:he total  error is more significant when P ( o )  is greater than 
P ( w )  than when P ( w )  is smaller, e.g., a ratio of E(w) = 2 con- 
tributes more to  the  total  error  than a ratio af 1/2. We con- 
clude that: 

tfter  the minimization of error, we expezt a better  fit of 
P(w) to P(w) where P ( o )  is greater than P ( w ) ,  than where 
P(w) is smaller (on the average). 

For  example, ifP(w) is the  power  spectrum of a  quasi-periodic 
signal (such as in Fig. 3), then most of the energy in P ( w )  will 
exist in  the harmonics, and very little energy will reside be- 
tween  harmonics. The  error measure in (62) insures that  the 

having the  same  properties. 

E(w)=lforal lwktrueonlyasp-r=.  

Itakura [ S O ] ,  [ 51  1 discusses a maximum  likelihood error criterion 

I3Except for the  special case when P(w) is all-pole,  the condition 

approximation of p(w) to P(w) is far superior at  the  harmonics 
than between the harmonics. If the signal had  been  generated 
by exciting  a  filter with a  periodic  sequence of impulses, then 
the system  response of the filter  must pass through all the 
harmonic peaks. Therefore, with  a proper choice of the model 
order p ,  minimization of the LP error measure results in  a 
model spectrum  that is a  good approximation  to  that system 
response. This  leads to one  characteristic of the local property: 

minimhization  of the  error measure E results in a model spec- 
trum P ( w )  that is a good estimate of the spectral  envelope of 
the signal spectrum P ( o ) .  

Fig. 6  shows that  this  statement also applies  in  a  qualitative 
way when the  excitation is random noise. It should  be clear 
from  the above that  the  importance of the local property is 
not as  crucial when the variations of the signal spectrum  from 
the spectral  envelope  are much less pronounced. 

In  the modeling of harmonic spectra, we showed an example 
in Fig. 7(a) where, although  the all-pole spectrum resulting 
from LP modeling was a  reasonably  good estimate of the 
harmonic  spectral  envelope, it did not yield the unique all-pole 
transfer function  that coincides  with the line spectrum at the 
harmonics. This is a significant disadvantage of  LP modeling, 
and is an indirect reflection of another characteristic of the 
local property: the  cancellation of errors. This is evident from 
(75) where the  instantaneous  errors E ( o )  are  greater  and less 
than 1 such  that  the average is 1.  To help  elucidate this  point, 
let us define  a new error measure E’ that is the logarithm 
of E in (62): 

where the gain factor has been omitted since it is not relevant 
to  this discussion. It is simple to show that  the minimization 
of E’ is equivalent to the Tinbization of E .  For cases where 
P(w) is smooth relative to P ( w )  and thehvalues  of P(o) are not 
expected  to deviate very much  from P ( o ) ,  the logarithm of 
the average of spectral ratios can be approximated by the 
average of the logarithms, i.e., 

(77) 

From  (72)  it is clear that the  contributips to the  error when 
P ( w )  > P ( w )  cancel those when P ( o )  < P(o). 

The above discussion suggests the use of an error measure 
that takes the magnitude of the integrand in  (77). One such 
error measure is 

1 -  
= G  I, [log P(w) - log B(w)l d w .  (78) 

E” is just  the mean  squared error  between  the  two log  spectra. 
It has the  important phroperty that  the minimum error of zero 
occurs if and only if P ( w )  is identical to P(w). Therefore, if 
we use (the discrete form  of) E” in  modeling the  harmonic 
spectrum in Fig. 7(a), the resulting model spectrum  (for p = 14) 
will be identical to the dashed spectrum, since the minimum 
error of zero is achie;able by that spectrum. However, while 
the  error measure E solves one problem, it  introduces an- 
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other.  Note  that  the  contributions  to  th5total  error in (78) 
are equally important  whether P(w) > P(w) or vice versa. 
:his means that if the variations of P(w) are large relative to 
P(w) (such as in Fig. 3),  the resulting  model spectrum will nor 
be a  good estimate of the spectral  envelope. In  addition,  the 
minimization of E” in (78) results in a set of nonlinear  equa- 
tions  that must be solved iteratively, thus increasing the  com- 
putational  load  tremendously. 

Our  conclusion is that  the LP error measure in (62) is to be 
preferred  in  general, except  for certain ‘special cases (as in 
Fig. 7(a)) where an error measure such as E“ in (78) can be 
used, provided one is willing to carry the  extra  computational 
burden. 

The global and local properties described here  are properties 
of the  error  measye in (62) and do  not  depend  on  the de- 
tails of P(w) and P(w). These properties  apply on the average 
over the whole freqtency range. Depending on  the detailed 
shapes of P(w) and P(w), the resulting match can bEbetter in 
one spectral region than in another.  For  example, if P(w) is an 
all-pole model spectrum  and if the signal spectrum P(w) con- 
tains  zeros as well as poles, then  one would not  expect as  good 
a match at the  zeros as at  the poles. This is especially true if 
the zeros have bandwidths of the same order as the poles or 
less.  (Wide bandwidth zeros  are  5sually well approximated by 
poles.) On the  other  hand, if P(w) is an all-zero spectrum 
then  the preceding statement would have to be reversed. 

C. The Normalized Error 
The  normalized error  has been  a very useful parameter  for 

the  determination of the  optimal  number of parameters to be 
used in  the model spectrum. This  subject will be discussed in 
the following  section. Here we shall present  some of the  prop- 
erties of the normalized error, especially as they relate to  the 
signal and model  spectra. 

I )  Relarion ro the Spectral Dynamic Range: The normalized 
error was defined in Section I1 as the  ratio of the minimum 
error E, to ;he energy  in the signal R(0) .  Keeping in mind 
that R ( 0 )  = R(O), and substituting  for E, from  (72), we obtain 

E =P=- 
R ( 0 )  Rh(0). 

Also, from  (73), we have in the limit  as p + ? 

(79) 

Therefore,  the normalized  error is always equal to  the normal- 
ized zero quefrency of the model spectrum.  From  (40) and 
(79)  it is clear that Vp is a monotonically decreasing function 
of p ,  with Vo = 1 and V- = Vmin in (80). Fig. 8  shows plots of 
V, as  a function of p for  two speech sounds (sampled at 
10 kHz) whose spectra are similar to  those  in Figs.̂ 3 and 6. 

It is instructive to write V, as a function of Ha). From 
(63)  and  (70),  (79) can be rewritten as 

It is clear from  (81)  that V, depends completely on  the shape 
of the model spectrum,  and  from (go), Vmin is determined 
solely by the  shape of the signal spectrum. An interesting way 
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Fig. 8. Normalized error curves for the sounds [SI in  the  word “list” 
and [ae] in the  word  “potassium.” 
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Fig. 9. Two-pole  normalized error  versus spectral  dynamic range for 200 
different  two-pole  models.  The  solid curve is V,, the absolute  lower 
bound on the  normalized error. 

to view  (81’) is that V, is equal  to  the  ratio of the geometric 
mean of the  model  spectrum to  its  arithmetic mean. This ratio 
has been used in the past as a  measure of the spread of the 
data [ 221,  [48]. When the spread of the  data is small, the 
Latio  is close to 1. Indeed,  from (8 1)  it is easy to see that if 
P ( o )  is flat, V, = 1. On  the  other  hand, if the  data spread is 
large, tken Vp becomes close to zero. Again, from  (81) we see 
that if P(w) is zero  for a portion of the  spectrum (hence  a large 
spread), then Vp = 0. (Another way of looking at V, is in 
terms of the flatness of the  spectrum [ 401 .) 

Another measure of data spread is the  dynamic range. We 
define the spectral dynamic range d as the  ratio of the highest 
to the lowest amplitude  points  on  the  spectrum: 

d = H / L  

where 

H = max P ( o )  L = min B(w). (82) 
W W 

The relation between  the normalized error  and  the spectral 
dynamic range is illustrated  in Fig. 9. The  dark  dots in the 
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figure are plots of the normalized error versus the spectral 
dynamic range (in  decibels) for 2-pole models of 200 different 
speech spectra.  The solid curve in Fig. 9 is an  absolute lower 
bound  on  the  geometric-to-arithmetic mean ratio  for any 
spectrum with  a given dynamic range. The curve is a plot of 
the following relation [ 221 , [ 64 J 

vu = y ( ’  -7) (83) 

where 

log d 
7 = 7 7  

and Vu stands  for  the  absolute lower  bound on Vp for a given 
d .  The overall impression from Fig, 9 is that  the normalized 
error generally decreases as the  dynamic range of the  spectrum 
increases. This is apparent in Fig. 8 where Vp for  the vowel 
[a] is less than  that  for  the fricative [SI, and [a] has a much 
higher spectral  dynamic range than [SI. 

2 )  A Measure of Ill-Conditioning: In solving the  autocorrela- 
tion normal equations  (1  2),  the  condition of the  autocorrela- 
tion  matrix is an  important consideration  in deciding the 
accuracy of the  computation needed. An illconditioned ma- 
trix can cause numerical problems  in  the  solution. An accepted 
measure of illconditioning  in a matrix is given by the  ratio 

d’ = hmax/Xmh (85) 

where Amax and Amin are the maximum and minimum eigen- 
values of the  matrix [ 27 J , [ 8 11 . Grenander  and Szego [ 4 1 1, 
[42] have shown that all the eigenvalues of an autocorrelation 
matrix lie in the range hi E [ H ,  L ]  , 1 < i < p ,  where H and L 
are  defined  in (82). In  addition, as the  order of the matGx p 
increases, the eigenvalues become approximately  equal to P(w)  
evaluated at equally spaced points with  separation 2n/(p + 1). 
Therefore,  the  ratio d’ gizen in ( 8 5 )  can be well approximated 
by the  dynamic range of P ( w ) :  

d’ Z d .  (86) 

Therefore,  the spectral dynamic range is a good measure of the 
ill-conditioning of  the  autocorrelation matrix. The larger the 
dynamic range, the greater is the chance that  the  matrix is ill- 
conditioned. 

But in the previous section we noted  that  an increase in d 
usually results  in  a  decrease in the normalized error V p .  There- 
fore, Vp can also be used as a measure of ill-conditioning: the 
ill-conditioning is greater with decreased Vp.  The problem be- 
comes more and more  serious as Vp + 0, i.e., as the signal 
becomes highly predictable. 

If ill-conditioning occurs sporadically, then  one way of 
patching the problem is to increase the values along the princi-. 
pal  diagonal of the  matrix by a small fraction of a percent. 
However, if the problem is a regular one,  then  it is a good idea 
if one can reduce the  dynamic range of the signal spectrum. 
For  example, if the  spectrum  has a general slope, then a single- 
zero  filter of the  form 1 + nz-’ applied to  the signal can be 
very effective. The new signal is  given by 

s:, =s, +USn-’. (87) 

An optimal value for n is obtained by solving for  the filter 
A ( z )  that “whitens” (flattens) s;. This  is, of course, given by 
the first order  predictor, where 

R( 1) and R(0)  are  autocorrelation coefficients of the signal s,. 
The filtered signal s; is then guaranteed to have a smaller 
spectral dynamic range. The above process is usually referred 
to as preemphasis. 

One conclusion from  the above concerns  the design of the 
low-pass filter that  one uses before sampling the signal to re- 
duce aliasing. In order  to ensure against aliasing, it is usually 
recommended  that  the  cutoff  frequency of the filter be lower 
than half the sampling frequency. However, if the  cutoff fre- 
quency is appreciably  lower than half the sampling frequency, 
then  the spectral dynamic range of the signal spectrum in- 
creases, especially if the fiiter has a  sharp cutoff  and  the  stop 
band is very low relative to  the pass band.  This  increases 
problems of ill-conditioning. Therefore, if one uses a  lowpass 
filter  with  a sharp  cutoff,  the  cutoff  frequency should be set 
as close to half the sampling frequency as possible. 

D. Optimnl  Number of Poles 
One of the  important decisions that usually has to be made 

in fitting of all-pole models is the  determination of an “optimal” 
number of poles. It is a  nontrivial exercise to define the word 
“optimal” here, for as we have seen, the  fit of the model 
“improves” as the  number of poles p increases. The problem 
is where to  stop. Clearly we would like the minimum value of 
p that is adequate  for  the problem at  hand,  both  to reduce our 
computation and to minimize the possibility of ill-conditioning 
(which increases with p since V, decreases). 

If the signal spectrum is an all-pole spectrum  with p o  poles, 
then we know  that Vp = Vp, ,  p 2 p o ,  and k, = 0, p > p o ,  i.e., 
the  error curve  remains flat  for p > p o .  Therefore, if we ex- 
pect the signal spectrum  to be an all-pole spectrum, a simple 
test to  obtain  the  optimal p is to check when the  error curve 
becomes flat.  But, if the signal is the  output of a po-pole filter 
with  white noise excitation,  then  the suggested test will not 
work, because the  estimates of the poles  are based on a finite 
number of data  points and the  error curve will not be flat  for 
p > p o .  In practice, however, the error curve will be almost 
flat  for p > p o .  This suggests the use of the following  thresh- 
old test 

This test  must succeed for several consecutive values before 
one is sure that  the  error curve has actually flattened  out. 

The use of the  ratio V,,,/V, has been an accepted method 
in the statistical literature [ 61 , [ 171 , [ 11 21 for  the  determina- 
tion of the  optimal p .  The test is based on  hypothesis testing 
procedures using maximum  likelihood  ratios.  A  critical review 
of hypothesis testing procedures  has  been given recently  by 
Akaike [ 51.  Akaike’s main point is that model fitting is a 
problem  where  multiple decision procedures are required 
rather  than  hypothesis testing. The  fitting problem  should be 
stated as an estimation problem  with an associated measure of 
fit. Akaike suggests the use of an information  theoretic cri- 
terion  that is an estimate of the mean log-likelihood [ 3 ] ,  
[SI .14 This is given by 

I( p )  = - 2 log (maximum likelihood) + 2p. (90)  

The value of p for which I ( p )  is minimum is taken  to be the 
optimal value. In  our problem of all-pole modeling, if we 
assume that  the signal has a Gaussian probability distribution, 

R(1) 
R ( 0 ) ‘  

[ I = - -  (88) I4An earlier criterion used by Akaike is what he &led the ‘‘final pre- 
diction error” [ 1 1 ,  [ 2 1, [ 37 1. 
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Fig. 10. A plot of  Akaike’s  information  criterion versus the  order of 
the predictor p. Here, Z(p) = 10 log,, Vp + (8.686p/O.4N), (N= 
200, Hamming  windowed).  The  “optimal”  value of  p  occurs at the 
minimum of  I(p),  shown by the  arrow  at  p = 10. 

then  (90) reduces to (neglecting  additive constants  and dividing 
byN)  [a] ,  1171,  [511 

Z( p )  = log vp + - 2P 
Ne 

where Ne is the “effective” number of data  points in the signal. 
The word  “effective” is used to  indicate  that  one  must com- 
pensate  for possible windowing. The effective width of a 
window can be taken as the  ratio of the energy under  the 
window relative to  that of a  rectangular  window. For ex- 
ample, for a  Hamming  window, Ne = 0.4N. 

Note  that  the first term  in  (91) decreases as  a function of p ,  
and the second term increases. Therefore, a  minimum can 
occur. In practice, there are usually several local  minima, then 
the value of p corresponding to  the  absolute minimum of Z ( p )  
is taken as the  optimal value. Usually Z ( p )  is computed  up to 
the  maximum value of interest,” and the minimum of Z ( p )  is 
found in that region. 

Fig. 10 shows an example of the application of Akaike’s 
criterion. The  dotted curve is the usual error curve and  the 
solid curve is a plot of Z(p) in (91) multiplied  by 10 loglo e to 
obtain  the  results in decibels. In Fig. 10,  the  optimal pre- 
dictor  order  is p = 10.  Note  that Z ( p )  for p > 10 slopes up- 
ward, but very gently. This indicates that  the  actual  absolute 
minimum is  quite sensitive to  the linear term in (91). In prac- 
tice,  the criterion in (91) should not be regarded  as an abso- 
lute, because it is based on several assumptions which might 
not  apply  for  the signal of interest.  For  example,  the assump- 
tions of uncorrelated noise excitation and Gaussian distribu- 
tions might not  hold.  Therefore,  the  experimenter should  feel 
free to adjust the  criterion to  suit one’s application. One 
simple way of “tuning”  the criterion is to multiply Ne by an 
appropriate  factor. 

V. DATA COMPRESSION BY LINEAR PREDICTION 
The  methods  outlined  in  Section I1 for  the modeling of the 

behavior of a signal  can be very useful  in data compression. 
The process of signal or  system modeling is essentially one of 
redundancy removal, which is the essence of data compression. 

The idea of attempting  to  predict  the value of a signal from 
previous sample values has  been  labeled  in communications as 
“predictive  coding” [ 281 . Adaptive  linear prediction has  been 
used extensively in speech and video transmission [ 71,  [9], 
[231,  [,MI,  [SO],  [57],  [83].  For  the purposes oftransmis- 
sion one must quantize and transmit  the  predictor parameters 
or  some  transformation  thereof.  It has  been known  for some 
time  that  the  quantization of the  predictor parameters them- 
selves is quite inefficient since a large number of bits is re- 
quired to retain the desired fidelity  in the  reconstructed signal  
at  the receiver [ 721. Below, several equivalent representations 
of the  predictor are  presented and  their  quantization  proper- 
ties  are discussed. We shall continue to assume that H(z)  is 
always stable,  and hence  minimum phase. A ( z )  is, of course, 
then also minimum phase. 

A .  Alternate  Representations of Linear  Predictor 
The following is a list of possible sets of parameters that 

characterize  uniquely the all-pole filter H ( z )  or  its inverse A(z ) .  
1)  (a) Impulse  response of the inverse filter A ( z ) ,  i.e., pre- 

dictor parameters a k ,  1 Q k < p. 
(b)  Impulseresponse of the all-pole model h, ,  0 < n < p ,  

which is defined in (30).  Note  that  the first p + 1  coefficients 
uniquely specify the  filter. 

2) (a)  Autocorrelation coefficients of a k ,  p(i ) ,  0 Q i < p, as 
defined  in (66). 

(b)  Autocorrelation coefficients of h, ,  Rh(i), 0 Q i < p ,  as 
defined in (31)  and (32). 

3) Spectral  coefficients of A ( z ) ,  ri, 0 Q i Q p (or equiva- 
lentiy  spectral  coefficients of ~ ( z ) ,  c2/ri): 

P 2mJ ri = p(o)  + 2 p ( j )  COS - O Q i G p  (92) 
i-1 2 p + 1 ’  

where p(i )  are as  defined in (66).  In  other words, (ri) is ob- 
tained  from {p( i ) }  by a  discrete Fourier  transform. 

4) Cepstral  coefficients of A @ ) ,  c,, 1 Q n Q p (or equiva- 
lently cepstral  coefficients of H(z) ,  - c,): 

log A ( e i w )  einw d w .  (93) 

Since A ( z )  is minimum  phase, (93) reduces to [381,  [771 

Equation  (94) is an iterative method  for  the  computation 
of  the cepstral  coefficients directly  from  the  predictor 
coefficients. 

5) Poles of H(z)  or zeros of A ( z ) ,   z k ,  1 < k ( p ,  where 
( z k }  are  either real or  form  complex conjugate pairs. Conver- 
sion of the  roots to the s plane  can be achieved by  setting  each 
root z k  = eSkT, where sk = (7k + j w k  is the corresponding pole 
in the s plane, and T is the sampling  period. If the  root zk  = 
Zkr + j zk j ,  then 

1 
w k  = - arctan - zk i  

T Z k r  

the  maximum  value of  p  that  should  be  used if one is interested  in  a where Z k r  and zk i  are the and parts Of ‘k*  
reliable  estimate. respectively. 

Is Akaike  informed  me  that  he  usually  recommends pmax < 3N’I’ as 
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6) Reflection  coefficients k i ,  1 < i   G p ,  which  are obtained 
as a byproduct of the  solution of the  autocorrelation  normal 
equations, as in (38), or  from  the backward recursion (51). 

Some of the preceding sets of parameters have p + 1 coeffi- 
cients while others have only p coefficients. However, for  the 
latter  sets  the gain G needs to be specified as well, thus keep- 
ing the  total  number of parameters a sp  + 1 for all the cases. 

For purposes of data  transmission, one is usually interested 
in recovering the  predictor coefficients from  the parameters 
that are chosen for transmission. The required  transforma- 
tions are clear for most of the above  parameters, except per- 
haps for  the parameters p ( i )  and r i .  Through  an inverse DFT, 
the spectral  coefficients r i  can be converted to autocorrela- 
tion coefficients p ( i ) .  One  method of recovering the  predictor 
parameters from { p ( i ) }  is as follows. Apply  a DFT to the 
sequence { p ( i ) )  after appending it with an appropriate number 
of zeros to achieve sufficient resolution in the resulting spec- 
trum of A ( z ) .  Divide G2 by  this spectrum to obtain  the spec- 
trum of the filter H ( z ) .  Inverse Fourier transformation  okthe 
spectrum of H(z)  yields the  ptocorrelation coefficients R ( i ) .  
The first p + 1  coefficients R(i), 0 < i G p ,  are then used to 
compute  the  pre2ictor coefficients via the  normal  equations 
(12)  with R ( i )  = R ( i ) .  

B. Quantization  Properties 
Although the  sets of parameters given above  provide equiva- 

lent  information  about  the linear predictor,  their  properties 
under  quantization are different.  For  the purpose of quantiza- 
tion,  two desirable properties  for a parameter set to have are: 
1) filter  stability upon  quantization and 2) a natural ordering 
of the parameters. Property  1) means that  the poles of H(z)  
continue  to be inside the unit circle even after parameter 
quantization. By 2), we mean that  the parameters exhibit an 
inherent ordering, e.g., the  predictor coefficients  are ordered 
as a1 , a 2 ,  * - , u p .  If a1 and (12 are  interchanged then H(z)  is 
no longer the same in  general, thus illustrating the existence 
of an ordering. The poles of H(z),  on  the  other  hand, are not 
naturally  ordered since interchanging the values of any two 
poles does  not change the filter. When an ordering is present, 
a  statistical study  on  the  distribution of individual  parameters 
can be used to develop better encoding schemes. Only the 
poles  and the reflection  coefficients  insure stability  upon 
quantization, while all the sets of parameters except  the poles 
possess a natural ordering. Thus  only  the reflection coeffi- 
cients possess both of these  properties. 

In  an  experimental  study [63] of the  quantization proper- 
ties of the  different parameters, it was found  that  the impulse 
rezponses { a k }  and { h , }  and  the  autocorrelations { p ( i ) }  and 
{R(i))  are highly susceptible to causing instability of the  filter 
upon  quantization.  Therefore, these  sets of parameters  can  be 
used only  under minimal quantization,  in which case the 
transmission rate would  be excessive. 

In  the  experimental investigation of the  spectral and  cepstral 
parameters, it was founs  that  the  quantization  properties of 
these  parameters  are generally superior to those of the impulse 
responses and autocorrelation coefficients. The spectral pa- 
rameters often yield results  comparable to those  obtained by 
quantizing the reflection  coefficients. However,, for  the cases 
when the  spectrum consists of one  or more very sharp peaks 
(narrow bandwidths), the  effects of quantizing  the spectral 
coefficients often cause certain regions in the  reconstructed 
spectrum  (as described in the previous section)  to become 
negative, which leads to  instability of the  computed  filter. 

Quantization of the cepstral  coefficients can also lead to in- 
stabilities. It should  be noted here that  the  quantization 
properties of these  parameters give better results if the  spectral 
dynamic range of the signal is limited  by  some form of 
preprocessing. 

Filter  stability is preserved under  quantization of the poles. 
But poles are expensive to  compute, and they  do  not possess a 
natural ordering. 

The conclusion is that, of the  sets of parameters given in the 
preceding, the reflection  coefficients  are the best set to use as 
transmission  parameters. In  addition  to ease of computation, 
stability  under  quantization, and natural ordering, the values 
of the reflection  coefficients k i ,  i < p ,  do  not change as p is 
increased,  unlike any of the  other parameters. In  the follow- 
ing, we discuss the  optimal  quantization of the reflection 
coefficients. 

C. Optimal  Quantization (531, (6.51 
Optimal  quantization of the  reflection coefficients depends 

on  the fidelity  criterion  chosen. For many  applications, it is 
important  that  the log spectrum of the all-pole model be pre- 
served. In this case, it is reasonable to  study  the sensitivity of 
the log spectrum  with respect to changes in the reflection co- 
efficients. In a recent  study [ 65 I , a spectral sensitivity curve 
was plotted versus each of the reflection  coefficients ki for 
many different all-pole models obtained by  analyzing  a large 
number of speech samples. The results of the  study show that 
each sensitivity curve versus ki has the same general shape, 
irrespective of the  index i .  Each sensitivity curve is Ushaped; 
it is even-symmetric about ki = 0, with large values when 
lki l+ 1, and  small values when lkil is close to  zero. These 
properties  indicate  that linear quantization of the  reflection 
coefficients is not desirable, especially if some of them  take 
values very close to  1, which happens when the  spectrum con- 
tains sharp resonances.  Nonlinear quantization of ki is equiva- 
lent to a  linear quantization of another  parameter, say gi ,  
which is related to ki by  a  nonlinear transformation.  The re- 
quirement  that  the spectral  sensitivity of the new parameters 
be flat resulted in the following optimal  transformation [65] : 

1 + k i  

1 - ki 
gi = log - , alli. 

It is interesting to  note  from (45) that gi is simply the loga- 
rithm of the. hypothetical impedance ratios corresponding to 

The  optimality of the preceding transformation was based 
on a  specific  spectral  fidelity  criterion. Other  transformations 
would result if other  quantization fidelity  criteria were 
adopted." 

The transmission rate can be  reduced further  without affect- 
ing the fidelity  by proper  encoding of each  parameter. Vari- 
able word length encoding [34] (such  as Huffman) can  be 
used for this purpose if the statistical distributions of each of 
the parameters is known. These distributions can be obtained 
very simply from a  representative  sample of signals. 

ki . 

VI. POLE-ZERO MODELING 
Given the  spectrum of some arbitrary signal, it is generally 

not possible to determine  for certain the  identity of the sys- 
tem  that generated the signal in terms of a  set of poles  and 

formation proportional to  arcsin (kt) is optimal. 
16Using a log likelihood criterion, Itakura informed  me  that a trans- 
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zeros. The problem is inherently  nondeterministic,  for a  zero 
can be approximated arbitrarily closely by a large number of 
poles and vice versa. Indeed, we have seen in this  paper that 
the all-pole model spectrum can approximate  the signal spec- 
trum arbitrarily closely by simply increasing the  number of 
poles. However, if there are  a number of influential zeros  in 
the signal spectrum,  the  number of model poles can become 
very large. For  data compression  applications, this is an un- 
desirable situation. Also, there are applications  where the 
identification of the zeros is important.  Therefore,  it is useful 
to be able to model  a spectrum in terms of poles and zeros. 

Much effort is currently being expended  on  the problem of 
pole-zero modeling [8] ,   [17] ,   [19] ,   [20] ,   [29] ,   [30] ,   [88] ,  
[ 91 1 .  Most of these methods are  purely  in the  time  domain. 
However, there seems to be  a growing interest in frequency 
domain  methods [ 41, [ 461, [ 941 , partly  due  to  the speed of- 
fered by the  FFT. Add to this the  market availability of spec- 
trum analyzers and special hardware FFT processors. Of 
course, the time  and frequency  domain approaches  should 
give similar results since LP analysis is actually  performed  in 
the  autocorrelation  domain. 

The  beauty of all-pole modeling is that  it is relatively simple, 
straightforward, well understood, inexpensive,  and “always” 
works. Unfortunately,  none of these properties apply to pole- 
zero modeling. The main difficulty is that  the pole-zero prob- 
lem is nonlinear. We show this below for  the  stationary case. 
Then, we sketch  out representative  schemes for iterative  and 
noniterative estimation of the pole  and  zero  parameters. No 
exhaustive analysis is attempted;  the reader is referred to the 
aforementioned references. 

A .  Normal  Equations 
The  transfer  function of the pole-zero model is  given by H ( z )  

in  (2).  The corresponding  model spectrum is given by 

where B ( z )  and A ( z )  are  the  numerator and denominator poly- 
nomials  in H(z) ,  and  the all-zero spzctra N ( o )  and D(w) form 
the  numerator  and  denominator of P ( o )  and are given by 

N(w) = 1 + bp-jrw 
Q I 1 = 1  I 2  

and 

(99) 

:he matching error between the signal spectrum P(w) and 
P(w) is given by (62),  and  from  (97) is equal to 

E can be interpreted as the residual  energy obtained by passing 
the signal through  the filter A ( z ) / B ( z ) .  The  problem is to de- 
termine {ak} and (bl}  such  that E in  (1 00) is minimized. 

In  the sequel we shall make use of the following two 
relations: 

In  addition, we shall use the  notation R,p(i) to represent  the 
autocorrelation defined  by 

Thus, Rm(i )  is simply the  Fourier transform of P(w).” Tak- 
ing aE/aai in  (1 00) one  obtains 

au D 

Similarly, one can show that 

In  order to minimize E ,  we set aE/aai = 0, 1 < i < p ,  and 
aE/abi = 0, 1 < i < q ,  simultaneously.  These, then, comprise 
the  normal  equations. 

From  (103), it is clear that Rlo(i  - k )  is not a function of 
a k .  Therefore,  setting (104) to zero  results  in  a set of linear 
equations, identical in  form  to  the  autocorrelation normal 
equations  (12). However, R z l  ( i  - 1)  in (105) is a function of 
bl, as can be deduced from  (1  03)  with a = 2  and 0 = 1. There- 
fore,  setting  (1 05) to zero  results  in  a set of nonlinear  equa- 
tions in bl. If one wishes to solve for {ak} and {bl} simul- 
taneously,  then  one solves a  set of p + q nonlinear equations. 

Note  that if the signal is assumed to be nonstationary,  the 
above analysis can be  modified  accordingly in a  manner similar 
to  that  in Section 111-A for  the all-pole case. The resulting 
equations will be very similar in form to the preceding  equa- 
tions,  with  nonstationary  autocorrelations replacing the sta- 
tionary autocorrelations. 

B. Iterative Solutions 
Since the minimization of E in (1 00) leads to a set of non- 

linear equations,  the problem of minimizing E must then be 
solved iteratively.  There  are many  methods in the  literature 
for finding the  extrema of a function [ 301, [ 1081, many of 
which  are  applicable  in our case. In particular,  gradient 
methods are appropriate here since it is possible to evaluate 
the error gradient, as in (104)  and  (105). One such  method 
was used by Tretter  and Steiglitz [94] in pole-zero modeling. 
Other schemes,  such as the Newton-Raphson method,  require 
the evaluation of the Hessian (i.e., second derivative). This 
can be very cumbersome  in  many  problems, but is straight- 
forward in our case. This is illustrated  below  by giving a 
Newton-Raphson solution. 

Let x ) =  [ala2 * * * a p b l b z  - * * b q ]  be the transpose of a 
column  vector x whose elements  are  the coefficients ak  and 
b1. If x ( m )  is the  solution  at  iteration m ,  then x ( m  + 1) is 
given by 

x ( m + l ) = x ( m ) - J - ’ -  
aEl 

(1 06) 

where J is the ( p  + q )  X ( p  + q )  symmetric Hessian matrix 
ax x = x ( m )  

aN(w) - 2 5 bl COS (i- 1) W, bo = 1 (101) “For a discrete  spectrum awn) the  integrals  in (100) and (103) are -- 
abi l = o  replaced by summations. 
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given by J =  azE/axax’. Setting a’ = [ a l a 2  - * a p ]  and b’ = 
[ b l b 2  - bq] ,  (106) can be partitioned,  with X’ = [a’b‘l, as 

b = b ( m )   b = b ( m )  

(107) 

The  elements of the first-order  partial derivatives in  (107) are 
given by (104) and (105).  The  elements of the second partial 
derivatives can be  shown to be equal to 

- [ R z o ( j + i -  1 -  k ) + R z o ( j -   i -  I + k ) ]  ( 

P O  -=- 2 R z l ( i -  j )  + 4 x x bkbl 
abiabj k=O 1=0 

* [ R 3 ] ( j + i -  I -  k ) t R J l ( j -   i -  l t k ) ] .  (110) 

Given the estimates d m )  and b(m) ,  one can compute N ( a )  
and D(a) from  (98)  and  (99) using FFT’s, and  then use (103) 
to compute  the  autocorrelations Rlo ,  R Z o ,  R z l ,  and R31, 
which can then be used in (107)qllO)  to  compute  the new 
estimates a(m + 1) and b(m t 1). The  iterations are halted 
when the  error gradient goes below some prespecified thresh- 
old.  The minimum error is then  computed  from  (100). 

The Newton-Raphson method works very  well if the initial 
estimate is close to the  optimum.  In  that case, the Hessian J is 
positive definite  and  the convergence is quadratic [ 301 . In  the 
next section we discuss noniterative methods which  can be 
used to give these good initial estimates. 

C. Noniterative  Solutions 
One property  that is common to noniterative methods is 

that a good estimate of the  number of poles and zeros seems 
to be necessary for a  reasonable solution.  Indeed, in that case, 
there is not  much need to go to expensive iterative methods. 
However, in  general, such  information is unavailable and  one 
is interested in  obtaining the best  estimate for a given p and q. 
Then, noniterative methods can be used profitably to give 
good  initial  estimates that are necessary in  iterative methods. 

I )  Pole Estimation: Assume that  the signal s, had  been 
generated by exciting the pole-zero filter H(z)  in (2) by either 
an impulse or white noise. Then  it is simple to  show  that  the 
signal autocorrelation  obeys  the  autocorrelation  equation ( 3  1) 
for i > q.  Therefore,  the coefficients ‘Ik can be estimated by 
so lv ing(31)wi thq+l< i<q+p .  

The effect of the poles can now be  removed  by  applying the 
inverse filter A ( z )  to  the signal. In  the spectral domain  this 
can be done by computing a new spectrum PI (a) = P(w) 
D ( a ) .  The problem  now  reduces to the  estimation of the 
zeros in PI (a). 

2 )  Zero  Estimation: A promising noniterative method  for 
pole-zero estimation is that of cepstral  prediction [761,  [951. 
The basic idea is that  the poles of nc,, where c ,  is the com- 
plex cepstrum, comprise the poles  and zeros of the signal 
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[77].  Therefore,  for  zero  estimation,  the problem  reduces to 
finding the poles of nc,  which can be computed by the 
method  just described above,  where c ,  here is the  cepstrum 
corresponding to PI (a). 

Another  method  for zero estimation is that of inverse LP 
modeling [63].  The idea is quite simple:  Invert the  spectrum 
PI (a) and apply a  q-pole LP analysis. The  resulting predictor 
coefficients  are then good  estimates of bl. This  method gives 
good results if P l ( o )  is smooth relative to  the  model spec- 
trum. Problems arise if the variations of the signal spectrum 
about  the model spectrum are large. The reason is that LP 
modeling attempts to make a  good fit  to  the spectral  envelope, 
and  the envelope of the inverted spectrum is usually different 
from  the inverse of the desired spectral envelope. One solu- 
tion is to  smooth  the  spectrum P l ( a )  before inversion. Spec- 
tral  smoothing is usually performed  by  applying  a low-pass 
filter to  the  spectrum  (autocorrelation  smoothing)  or to  the 
log spectrum  (cepstral smoothing). Another  method is all- 
pole smoothing. Indeed, all-pole modeling can be thought of 
as just  another  method of smoothing  the  spectrum, where the 
degree of smoothing is controlled  by the  order of the predic- 
tor p ,  which is usually chosen to be much larger than  the 
number of zeros  in the model q.  We point  out  that  zero esti- 
mation by inverse LP modeling with all-pole smoothing is 
similar to  the  method of Durbin [ 241, [25]  in the  time 
domain. 

VII. CONCLUSION 
Linear prediction is an  autocorrelationdomain analysis. 

Therefore,  it can be approached  from  either  the  time  or fre- 
quency  domain.  The least squares error criterion in  the time 
domain translates into a spectral matching criterion in the fre- 
quency domain.  This  viewpoint was helpful  in  exploring the 
advantages and disadvantages of the least squares error 
criterion. 

The major portion of this  paper was devoted to all-pole 
modeling. This type of modeling is Simple, inexpensive and 
effective; hence its wide applicability  and  acceptance. In con- 
trast, pole-zero modeling is not simple, generally expensive, 
and is not  yet well understood.  Future research  should  be 
directed at  acq‘uiring a better understanding of the problems 
in pole-zero modeling and developing appropriate  methodole 
gies to deal with these problems. 
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