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Abstract

In single image super-resolution (SISR), given a low-
resolution (LR) image, one wishes to find a high-resolution
(HR) version of it which is both accurate and photo-
realistic. Recently, it has been shown that there exists a
fundamental tradeoff between low distortion and high per-
ceptual quality [3], and the generative adversarial net-
work (GAN) is demonstrated to approach the perception-
distortion (PD) bound effectively. In this paper, we pro-
pose a novel method based on wavelet domain style trans-
fer (WDST), which achieves a better PD tradeoff than the
GAN based methods. Specifically, we propose to use 2D sta-
tionary wavelet transform (SWT) to decompose one image
into low-frequency and high-frequency sub-bands. For the
low-frequency sub-band, we improve its objective quality
through an enhancement network. For the high-frequency
sub-band, we propose to use WDST to effectively improve
its perceptual quality. By feat of the perfect reconstruction
property of wavelets, these sub-bands can be re-combined
to obtain an image which has simultaneously high objective
and perceptual quality. The numerical results on various
datasets show that our method achieves the best trade-off
between the distortion and perceptual quality among the ex-
isting state-of-the-art SISR methods.

1. Introduction
Single image super-resolution (SISR) aims to restore

a high-resolution (HR) image from a low-resolution (LR)

one. In this context, some methods focus on improving

the objective image quality, through minimizing the mean

squared error (MSE) between the restored and the ground-

truth images [6, 22, 12, 13, 15, 30, 31]. Other meth-

ods aim to improve the perceptual image quality, through

minimizing the perceptual loss using adversarial training

[14, 21, 19]. The methods driven by objective quality

can achieve low distortion but with poor perceptual quality,

while the other category can generate photo-realistic images

but with large MSE distortion. We wish to obtain a super-

resolved image which is both accurate and photo-realistic.

However, as pointed out in [3], there exists a tradeoff be-

tween the ability to achieve low MSE and high perceptual

quality.

A natural approach to achieve this tradeoff is to train a

generative adversarial network (GAN) to minimize a com-

bined MSE and adversarial loss, which has been tried by

both SRGAN-MSE [14] and ENet [21]. However, the train-

ing process is extremely unstable. On the one hand, the

adversarial loss encourages the synthesis of high-frequency

details in the results [21]. On the other hand, since these

high-frequency details are not in the right place, the MSE

distortion is increased. This unstable training may lead to

many undesirable artifacts in the restored image, as shown

in Fig. 1. To avoid this, ESRGAN [27], which is the win-

ner of the PIRM challenge [2], proposed to train two sepa-

rate networks with the low MSE and high perceptual quality

targets, respectively. The two networks are then interpo-

lated to achieve a compromise on the objective and percep-

tual quality. However, the network interpolation requires

that the two networks have exactly the same architectures,

which strongly limits their performance. Instead of the net-

work interpolation, the image fusion method can be more

flexible, since it has no constraint on the network structure.

Given one image with high objective quality and another

image with high perceptual quality, image fusion aims to

fuse them to obtain an image with both high objective and

perceptual quality. Recently, Deng [5] proposed to combine

the two images using image style transfer. However, since

the style transfer is performed in pixel domain, it is difficult

to preserve the structure and texture information. As shown

in Fig. 1, the structure of the wall is severely affected.

Another disadvantage of Deng [5] is that it tries to op-
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Figure 1. Perception-distortion performance of different SISR methods. The blue points represent methods aiming for objective quality,

the green points represent methods aiming for perceptual quality, and the orange points represent methods aiming for a trade-off between

perception and distortion. The higher PSNR value indicates better objective quality and the higher perceptual score indicates better

perceptual quality. The bottom left corner is the best. Our method achieves the best trade-off among all the ”orange” methods.

timize the objective and perceptual quality as a whole, but

the objective and perceptual quality are influenced by dif-

ferent elements in an image. When they are optimized as a

whole, the increase of objective quality may lead to the de-

crease of perceptual quality, and vice versa. To achieve the

best tradeoff, we should separate the elements affecting the

objective quality from those affecting the perceptual qual-

ity, and optimize each of them separately. In this paper, we

propose to use wavelet transform to achieve this separation,

since wavelet can split an image into one low-frequency and

several high-frequency sub-bands. We find that the low-

frequency sub-band plays an important role in the objective

quality, while the high-frequency sub-bands can affect the

perceptual quality significantly. After separation, to obtain

the best tradeoff, we use an enhancement network to im-

prove the objective quality of the low-frequency sub-band,

and wavelet domain style transfer to improve the perceptual

quality of the high-frequency sub-bands.

Note that in this paper, we are not aiming for a new SISR

method towards high perceptual or objective image qual-

ity, which has been extensively explored recently. Instead,

we propose a novel image fusion method which combines

two images to achieve the best tradeoff between the percep-

tion and distortion, as shown in Fig. 1. Our method over-

comes many drawbacks of the existing methods. For exam-

ple, compared with SRGAN-MSE [14], we do not need to

train a deep network, and thus we have no concerns on the

stability of training. Compared with ESRGAN [27], we are

more flexible with the choice of the network architecture,

which gives us more freedom to achieve the best PD trade-

off. Compared with Deng [5], we split the elements affect-

ing the objective quality from those affecting the perceptual

quality, and we perform the style transfer in the wavelet do-

main with new techniques. All these contribute to higher

reconstruction performance and a better PD tradeoff.

The main contributions of this work are as follows:

• We show the relationship between the objec-

tive/perceptual image quality and the wavelet sub-

bands, which lays an important foundation to push for-

ward the PD performance. Through the wavelet sepa-

ration, the objective and perceptual quality is allowed

to be enhanced separately, with little influence on the

other, which leads to a better PD tradeoff.

• We propose a wavelet domain style transfer (WDST)

algorithm with a new defined loss function, to achieve

an effective tradeoff between distortion and percep-

tion. To the best of our knowledge, we are the first

to apply style transfer in the wavelet domain towards a

good PD tradeoff in SISR.

• We test the performance of our method on various

datasets. Compared with other state-of-the-art meth-

ods, our method achieves a better tradeoff between the

objective and perceptual quality.

2. Related work
SISR methods for objective quality. To improve the

objective quality, most methods try to minimize the MSE

loss between the reconstructed image and the ground-truth.

Traditional methods rely on dictionary learning to learn the

mapping from LR patches to HR patches [28, 29, 25]. The

state-of-the-art methods trained a specially-designed deep

neural network to minimize the MSE loss between the LR

and HR images[6, 12, 22, 15, 8, 31, 30]. This kind of meth-

ods can generate HR images with high objective quality.

However, these images are often visually unpleasant with

blurred edges, due to the absence of high-frequency details,

especially for large upscaling factors.

SISR methods for perceptual quality. Since the MSE

loss cannot measure the perceptual similarity between two

images, Ledig et.al [14] proposed to minimize the percep-

tual loss which was defined as a weighted sum of VGG loss

and adversarial loss. The VGG loss is good at represent-

ing the perceptual similarity between two images, and the



adversarial loss can make the restored image look realistic.

Later, Saggadi et.al [21] proposed to add a texture matching

loss to the VGG loss and adversarial loss, which achieved

good results in reconstructing images with high perceptual

quality. Recently, Mechrez et.al [19] proposed the contex-

tual loss to make the internal statistics of the restored image

similar to the ground-truth, which leads to more realistic

images.

SISR methods for tradeoff between objective and
perceptual quality. Both [14] and [21] have tried to op-

timize the objective and perceptual quality simultaneously.

Specifically, in [14], the SRGAN-MSE method is proposed

to minimize the combined loss of MSE and adversarial

losses. In [21], another texture matching loss is added to

the MSE and adversarial loss to make the training pro-

cess more stable. However, their results still suffer from

blocking and noisy artifacts. Choi et.al [4] trains a multi-

scale super-resolution model with a discriminator network

and two qualitative score predictors, which achieves high

perceptual quality while preserving the objective quality.

Most recently, ESRGAN [27] proposed to train two net-

works which aim to enhance the objective and perceptual

quality, respectively, and then these two networks are in-

terpolated to achieve a tradeoff between the objective and

perceptual quality. The work most related with ours is [5],

which also uses style transfer to combine two images. How-

ever, in [5], the style transfer algorithm is performed in the

pixel domain, and it has no technique to split the objective

and perceptual quality related elements from each other. As

a result, the objective and perceptual quality are optimized

as a whole, which significantly decreases the perception-

distortion performance.

3. Proposed method
Stationary wavelet transform. The wavelet transform

allows the multi-resolution analysis of images [10]. The

classical discrete wavelet transform (DWT) has a drawback,

i.e., it is not shift-invariant. The stationary wavelet trans-

form (SWT), also known as undecimated wavelet trans-

form, overcomes this drawback by removing the downsam-

pling operation in DWT [24]. Fig. 2 illustrates the 2D SWT

process for 2 level decomposition. Suppose that H0 and

G0 are the low-pass and high-pass filters of a standard 1D

wavelet decomposition, we can obtain the z transform of

LL, LH , HL, and HH sub-bands at the i-th level through

the following formulations:

LLi(zx, zy) = H0(z
2i−1

y )H0(z
2i−1

x )LLi−1(zx, zy), (1)

LHi(zx, zy) = G0(z
2i−1

y )H0(z
2i−1

x )LLi−1(zx, zy), (2)

HLi(zx, zy) = H0(z
2i−1

y )G0(z
2i−1

x )LLi−1(zx, zy), (3)

HHi(zx, zy) = G0(z
2i−1

y )G0(z
2i−1

x )LLi−1(zx, zy), (4)
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Figure 2. Illustration of two level 2D stationary wavelet transform

(SWT) of image X , with H0 and G0 as the low-pass and high-pass

filters, respectively.

where the LLi−1 is the LL sub-band at the (i − 1)-
th level, with LL0 as the input image X . After the

N -th level decomposition, we obtain (3N+1) wavelet

sub-bands with the same size as the input image, i.e.,

LLN , {LHi}Ni=1, {HLi}Ni=1, {HHi}Ni=1, where LLN con-

tains the low-frequency information at the N -th level, LHi,

HLi and HHi contain the horizontal, vertical and diagonal

details at the i-th level, respectively.

Motivation. The 2D SWT can decompose an image

into multiple sub-bands, including one low-frequency and

several high-frequency sub-bands. Our key insight here is

that the low-frequency sub-band has a significant effect on

the objective quality of the image, while the high-frequency

sub-bands affect the perceptual quality significantly. To ver-

ify that, we consider two super-resolved images: Ap with

high perceptual quality but low objective quality, and Ao

with high objective quality but low perceptual quality. Fig.

3 shows these two images, together with the histograms of

their sub-bands after SWT. Here, Ap and Ao are obtained

using the existing SISR methods CX [19] and EDSR [15],

respectively. We use peak signal-to-noise ratio (PSNR) to

measure the objective quality, and NRQM [16] to mea-

sure the perceptual quality following [19]. Note that larger

PSNR and NRQM values indicate better objective and per-

ceptual quality, respectively. As shown in Fig. 3, the high-

frequency sub-bands (i.e., LH, HL, HH) of Ap have quite

similar histogram distributions as the ground-truth, but that

is not the case for Ao. Since the high-frequency sub-bands

contain the detail information, this can explain why Ap has

high perceptual quality. For the LL sub-band, Ao has a more

similar histogram as the ground-truth than Ap, which is one

of the reasons why Ao has high objective quality.

In order to further verify our observation, a simple sub-

stitution experiment is performed as follows. We replace

the low-frequency sub-band of Ap with that of Ao, and keep

all its high-frequency sub-bands. These sub-bands are com-

bined via 2D inverse SWT (ISWT) to obtain a reconstructed

image Ãp. Likewise, we replace the low-frequency sub-
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Figure 3. The first row shows the histograms of different sub-bands of Ap which has high perceptual quality but low objective quality. The
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Figure 4. (a) shows the framework of our method, (b) illustrates the wavelet domain style transfer (WDST) algorithm, and (c) shows the

low-frequency sub-band enhancement (LSE) network.

band of Ao with that of Ap to obtain a reconstructed image

Ão. Table 1 shows the PSNR and NRQM results on the

BSD100 dataset. As can be seen, the PSNR of Ãp improves

more than 1dB over Ap while the NRQM score does not

change too much. Similar phenomenon can be observed

between Ão and Ao. The reason why the objective quality

is significantly affected is that the low-frequency sub-band

is changed. In contrast, the perceptual quality is not partic-

ularly influenced because we preserve the high-frequency

sub-bands. Thus, in order to obtain an image with a good

PD tradeoff, one possible solution is to pursue high objec-

tive quality of its low-frequency sub-band and high percep-

tual quality of its high-frequency sub-bands.

Fig. 4 (a) shows the framework of our method. Given

Table 1. PSNR and NRQM scores on the BSD100 dataset.

Methods Ap Ãp Ao Ão

PSNR 24.58 25.68 27.80 26.57

NRQM 8.8007 8.7775 5.7159 5.8864

one image Ap with high perceptual quality and another im-

age Ao with high objective quality, we first perform 2D

SWT on these two images, so that each image is decom-

posed into one low-frequency and several high-frequency

sub-bands. Take the decomposition with one level for ex-

ample, Ap is decomposed into {LLp, LHp, HLp, HHp},

and Ao is decomposed into {LLo, LHo, HLo, HHo}. For

LLo, we use LSE network to enhance its objective quality.

For high-frequency sub-bands pairs, e.g., LHp and LHo,

we use WDST to fuse them to a new sub-band. Finally,



Table 2. Benchmark comparisons for 4 × upscaling, with the best results bold and the second bests underlined.

Set5 Bicubic EDSR[15] CX[19] SRGAN-MSE[14] G–MGBP[20] PESR[26] Deng[5] ESRGAN[27] Ours

PSNR 28.42 32.63 29.10 30.66 30.87 30.76 31.14 31.11 31.46
SSIM 0.8245 0.9117 0.8523 0.8758 0.8807 0.8915 0.8917 0.8839 0.8929

NRQM 3.7624 5.2106 7.9566 7.3082 7.3115 7.1344 7.0022 7.0724 7.5180
Set14 Bicubic EDSR[15] CX[19] SRGAN-MSE[14] G–MGBP[20] PESR[26] Deng[5] ESRGAN[27] Ours

PSNR 26.10 28.95 26.01 27.01 27.56 27.57 27.77 27.53 28.07
SSIM 0.7850 0.8583 0.7839 0.8033 0.8206 0.8322 0.8325 0.8228 0.8356

NRQM 3.6598 5.3788 7.9423 7.8770 7.5042 7.5301 7.5575 7.5936 7.6827

BSD100 Bicubic EDSR[15] CX[19] SRGAN-MSE[14] G–MGBP[20] PESR[26] Deng[5] ESRGAN[27] Ours

PSNR 25.96 27.80 24.58 25.98 26.59 26.33 26.46 26.44 26.82
SSIM 0.6675 0.7432 0.6432 0.6429 0.6926 0.6980 0.7048 0.7002 0.7058

NRQM 3.7207 5.7159 8.8007 8.4276 8.1790 8.3298 8.4452 8.3034 8.5948
Urban100 Bicubic EDSR[15] CX[19] SRGAN-MSE[14] G–MGBP[20] PESR[26] Deng[5] ESRGAN[27] Ours

PSNR 23.14 26.86 24.00 - 25.15 25.88 25.96 26.08 26.26
SSIM 0.9011 0.9679 0.9313 - 0.9495 0.9610 0.9620 0.9624 0.9649

NRQM 3.4412 5.3365 6.7982 - 6.2190 6.3190 6.4317 6.1762 6.4556
PIRM Bicubic EDSR[15] CX[19] SRGAN-MSE[14] G–MGBP[20] PESR[26] Deng[5] ESRGAN[27] Ours

PSNR 26.51 28.72 25.41 - 27.17 27.11 27.48 26.66 27.63
SSIM 0.8232 0.8930 0.8177 - 0.8524 0.8649 0.8728 0.8529 0.8755

NRQM 3.8376 5.7116 8.5746 - 8.0556 8.2172 8.1665 8.2445 8.3692

all fused sub-bands and enhanced LLo are synthesised by

ISWT to obtain image Ar.

Low-frequency sub-band enhancement (LSE). For

the low-frequency sub-band LLo, we aim to further im-

prove its objective quality. Here, we employ the basic net-

work structure of VDSR [12] to achieve this goal, as shown

in Fig. 4 (c). The network is composed of 6 convolutional

layers with a rectified linear unit (Relu) after each layer. For

each layer, the filter size is 3×3 and the number of filters is

64. The input to the network is the low-frequency sub-band

LLo from the image Ao, and the target is the LLgt from

the ground-truth image Agt. To speed up the training pro-

cess, we also use the residual learning strategy which learns

the difference between target LLgt and the input LLo. The

training goal is to minimize the �2 norm between the pre-

dicted outputs LLr and the ground truth LLgt:

L =

N∑

i=1

‖LLgt(i)− LLr(i)‖2, (5)

where LLr is the sum of LLo and the learned residual map.

Wavelet domain style transfer (WDST). For the high-

frequency sub-bands, we propose a wavelet domain style

transfer (WDST) algorithm to improve their perceptual

quality. Take the sub-band pair LHp and LHo for exam-

ple, as shown in Fig. 3, the wavelet coefficients in LHp

are richer than those in LHo, i.e., LHp contains more non-

zero wavelet coefficients than LHo. We wish to transfer the

detailed wavelet coefficients in LHp to LHo, so that LHo

can have higher perceptual quality. Thus, we regard LHp

as the style input and LHo as the content input to gener-

ate an output sub-band LHr using WDST. Different from

the conventional style transfer algorithm where the inputs

are pixel values, we use the wavelet coefficients as inputs in

the WDST. Since the wavelet coefficients can be negative or

larger than 1, a pre-processing step is required to normalize

them between 0 and 1.

After normalization, for each high-frequency sub-band

pair, the WDST algorithm is performed by minimizing a

loss function that combines the content loss Lc, style loss

Ls [7] and a �1 norm loss. The �1 norm loss is specifically

added to preserve the sparsity of wavelet coefficients. The

total loss function for the LH sub-band is defined as:

LLH = αLc(LH
r, LHo)+βLs(LH

r, LHp)+γ‖LHr‖1, (6)

where α, β and γ are the weights for the content, style and

�1 norm loss, respectively. The content loss is defined as the

MSE between the feature maps of the content input and the

generated output at a specific layer L of a pre-trained VGG

network [23]:

Lc(LH
r, LHo) =

1

2
√
NLML

∑

i,j

(FL
ij (LH

r)− FL
ij (LH

o))2.

(7)

Here, FL(LHr) and FL(LHo) are the feature maps at

layer L of a pre-trained VGG network [23] with LHr and

LHo as inputs, respectively. In addition, NL is the num-

ber of feature maps at layer L, and ML is the product of

the width and height of the feature map. Different from the

content loss which is calculated between LHo and LHr,

the style loss is calculated between the style input LHp and

LHr. Moreover, unlike the content loss calculated at a sin-

gle layer, the total style loss is defined by a weighed sum of
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Figure 5. The first row shows the restored images of Zebra in Set 14 using EDSR, CX and our method, with the red values indicating the

PSNR/NRQM values. The second row visualizes the HL sub-bands of the images in the first row, together with the histograms.

the style loss at different layers:

Ls(LH
r, LHp) =

∑

l

wlL
l
s(LH

r, LHp), (8)

where wl is the weight for the style loss at the l-th layer. The

Ll
s(LH

r, LHp) is calculated as the MSE between the Gram

matrices of feature maps at the l-th layer in the pre-trained

VGG network with LHr and LHp as inputs, respectively.

Mathematically, it is defined as:

Ll
s(LH

r, LHp) =
1

4N2
l M

2
l

∑

ij

(Gl
ij(LH

r)−Gl
ij(LH

p))2,

(9)

where the Gl(LHr) and Gl(LHp) are the Gram matri-

ces at the l-th layer for LHr and LHp, respectively. We

have Gl(LHr) = F l(LHr)TF l(LHr) and Gl(LHp) =
F l(LHp)TF l(LHp). The layer conv 2-2 in VGG network

[23] is used to calculate the content loss, and layers Relu1-1,

Relu2-1, Relu3-1, Relu4-1, and Relu5-1 are used to calcu-

late the style loss. With all loss defined, following [7], we

use L-BFGS algorithm [32] to obtain LHr in (6) in a gra-

dient decent way. Similarly, we can obtain HLr and HHr.

After obtaining high-frequency sub-bands LHr, HLr,

and HHr, we need to de-normalize them. Then, we can re-

construct image Ar by performing 2D ISWT on these high-

frequency sub-bands together with the low-frequency sub-

band LLr using the synthesis low-pass and high-pass filters

H1 and G1. Here, for perfect reconstruction, H1 and G1

are the synthesis wavelet filters related to the analysis filters

H0 and G0 used in the decomposition [17].

4. Numerical results
Experimental setup. For the 2D SWT, we use bior2.2

as the default wavelet filter. The number of wavelet de-

composition levels is 2, which means we have six high-

frequency sub-bands and one low-frequency sub-bands (see
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Figure 6. The perception-distortion (PD) curves of EDSR and CX,

RCAN and CX, SRResNet-MSE and SRGAN-vgg54.

Fig. 2). In the LSE process, the loss function is minimized

using the stochastic gradient descent (SGD) with backprop-

agation. The batch size is 64, the basic learning rate is 0.01

and the momentum is 0.9. In the WDST process, the ratio

between the content loss and the style loss is 10−3, the ratio

between the content loss and the �1 norm loss is 10−5, and

the weight of each layer when calculating the style loss is

0.2. The maximum iteration number is 5000 and 1000 for

the first and second level decompositions, respectively. We

use EDSR method [15] to obtain Ao, and CX method [19]

to obtain Ap. Following [19], the perceptual score is cal-

culated using NRQM [16]. We evaluate the performance of

our method on various datasets, including Set5 [1], Set14

[29], BSD100 [18], Urban100 [9], and PIRM [2].

Benchmarks. The comparison methods are classified

into three categories: methods that aim to improve the

objective quality including A+ [25], Self-Ex [9], SRCNN

[6], ESPCN [22], SRResNet-MSE [14], VDSR [12], EDSR

[15], and RCAN [30]; methods that aim to improve the

perceptual quality including SRGAN-vgg54 [14], SRGAN-

vgg22[14], ENet [21], and CX [19]; and methods that

aim to improve both the objective and perceptual quality



(a) GT (b) SRCNN (d) ENet (e) CX (f) Ours

21.53dB/5.9251 19.39dB/9.0732 19.81dB/9.0797 21.51dB/9.093219.47dB/9.0631
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Figure 7. Visual comparisons of image from BSD100 for 4× upscaling. The red numbers indicate the PSNR and NRQM values.

(21.67dB/6.2158) (23.63dB/6.6872)(21.65dB/6.4596)

(a) GT (b) Bicubic (c) G-MGBP (d) ESRGAN (f) Ours(e) Deng

(23.18dB/6.5650)(21.57dB/3.1230)(PSNR/NRQM)

Figure 8. Visual comparisons of image from Urban100 for 4× upscaling. The red numbers indicate the PSNR and NRQM values.

Table 3. Effects of wavelet filter on Set 14 dataset.

Filter haar db2 bior2.2 rbior2.2 coif2 db4 bior4.4

PSNR 28.06 28.08 28.07 27.96 28.05 28.06 28.05

SSIM 0.8379 0.8369 0.8356 0.8336 0.8344 0.8348 0.8343

NRQM 7.5109 7.6103 7.6827 7.6403 7.7101 7.6928 7.7442

including SRGAN-MSE [14], G–MGBP[20], PESR [26],

EUSR[4], Deng [5] and ESRGAN[27].

Effectiveness of WDST. In order to show the effective-

ness of our WDST algorithm, we visualize in Fig. 5 the

input content and style sub-bands, as well as the output

sub-band using the WDST algorithm. As can be seen, the

content sub-band lacks many high-frequency details and the

style sub-band has messy structures, e.g, the horse leg and

tail. After the WDST, the output sub-band overcomes these

drawbacks, which is now abundant in high-frequency de-

tails and has clear textures and structures. To some extent,

the output sub-band corrects the wrong information in the

style sub-band and re-locate it in the right place, with the

guidance of the content sub-band. We also show the his-

togram distributions of the sub-bands in Fig. 5. It can be

seen that our histogram is closer to the ground-truth com-

pared to EDSR, which is the reason why we have higher

perceptual quality.

Wavelet filter sensitivity. In our algorithm, we use

wavelet filter to decompose each image into various sub-

bands. In order to investigate the effects of wavelet fil-

ter on the performance of our algorithm, we present in Ta-

ble 3 the PSNR, SSIM and NRQM results with different

Table 4. Ablation study of WDST on each sub-band.

Sub-band LH HL HH PSNR SSIM NRQM

WDST

N Y Y 27.19 0.7195 7.8490

Y N Y 27.28 0.7227 7.8343

Y Y N 26.96 0.7105 8.0542

Y Y Y 26.82 0.7058 8.5948

wavelet filters. These filters include haar, db2 and db4
from Daubechies, bior2.2 and bior4.4 from Biorthogonal,

rbio2.2 from Reverse biorthogonal, and coif2 from Coif-

man wavelet family. From Table 3, we can see that the

wavelet filter indeed has some effects on the performance.

Specifically, the haar filter has the highest SSIM value, the

db2 filter performs best in PSNR and the bior4.4 filter has

the best perceptual quality. However, the difference among

different filters is not very significant.

Perception-distortion (PD) performance. Fig. 1 com-

pares the PD performance of different methods in the PSNR

and NRQM plane. As we can see, methods A+, Self-Ex,

SRCNN, ESPCN, SRResNet-MSE, VDSR, EDSR, RCAN

occupy the upper left region which means they have high

objective quality but low perceptual quality. In contrast,

methods SRGAN-vgg54, SRGAN-vgg22, ENet, and CX

take up the bottom right region, which indicates they have

high perceptual quality but low objective quality. Other

methods like SRGAN-MSE, PESR, Deng, and ESRGAN

stand in the middle region, which are all trying to achieve

a good tradeoff between distortion and perceptual quality.

Among all these methods, our method is the closest to the



24.97dB/8.8459

25.77dB/8.9472

23.15dB/8.4316

24.04dB/8.5810

23.50dB/8.9591
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(a) SRGAN-MSE [14] and ours

28.26dB/9.0392

28.71dB/9.1111

22.20dB/8.6854

22.56dB/8.7918 26.99dB/7.9486

26.49dB/7.8488

(b) Deng [5] and ours

Figure 9. (a) compares the images between SRGAN-MSE and ours, (b) compares the images of Deng and ours. The first rows in (a) and

(b) are SRGAN-MSE and Deng, and the second row is our method. The red numbers indicate the PSNR and NRQM values.

bottom left corner, which means that we achieve the best

trade-off between the objective and perceptual quality. Ta-

ble 2 compares the numerical results of our method with

SRGAN-MSE [14], G–MGBP[20] , PESR [26], Deng [5]

and ESRGAN[27] (with α =0.8), which all aim to improve

both the perceptual and objective quality. As we can see,

our method outperforms others in both perceptual and ob-

jective quality.

Content and Style inputs sensitivity. To show the po-

sition of our method more clearly, we draw in Fig. 6 the PD

curve of EDSR and CX, which are the two default methods

to generate Ao and Ap in this paper. The curve is drawn by

interpolating the pixel values of Ao and Ap with a parameter

μ ∈ [0, 1], as follows

Ar = μ ∗Ap + (1− μ) ∗Ao. (10)

Obviously, when μ increases, the NRQM increases while

the PSNR decreases. As we can see from Fig. 6, our

method is far lower than that PD curve, which means we

are much better than the simple interpolation of Ao and

Ap. To investigate our sensitivity to the content and style

inputs, we also draw the PD curves of RCAN [30] and

CX, SRResNet-MSE and SRGAN-vgg54 [14], together

with our correspoding results. We can see that, even in

the worst case (with SRResNet-MSE and SRGAN-vgg54

as inputs), our algorithm still achieves better PD trade-off

(i.e., PSNR/NRQM=26.56 dB/8.5005) than Deng (26.46

dB/8.4452) and ESRGAN (26.44 dB/8.3034).

Visual comparison. Figs. 7 and 8 visualize the images

of our and other methods. We can see from Fig. 7 that our

method can restore correctly the texture of the bridge and

the structure of the window, while others either distort the

texture or struggle to restore the structure. From Fig. 8,

we can see that our method can restore the wall and lights

clearly, while others fail to do so. Our method also over-

comes many drawbacks of other methods. Fig. 9 (a) com-

pares our method with SRGAN-MSE [14]. We can see that

the SRGAN-MSE method produces lots of abnormal noise

and wrong textures in the images, while our method does

not have these problems. Fig. 9 (b) compares our method

with Deng [5], which shows that the images of Deng [5] are

noisy and have messy structures. In contrast, our method

is able to reconstruct images with clean and accurate struc-

tures.

Ablation study. In order to study the effects of each

high-frequency sub-band on the perception-distortion per-

formance, we show in Table 4 the results when WDST is

not performed on one of the sub-bands. From this table, we

can see that each sub-band contributes to the perception-

distortion performance. When WDST is absent from any

of them, the perceptual quality (NRQM) decreases signifi-

cantly. However, compared with LH and HL sub-bands, the

influence of HH sub-band is not very significant. This is be-

cause the HH sub-band contains the diagnonal information,

which is not as much as the horizontal and vertical informa-

tion contained in the LH and HL sub-bands, respectively.

5. Conclusion and future work
In this paper, we have proposed a novel method based

on wavelet domain style transfer, to give an excellent solu-

tion to the perception-distortion conflict in SISR. We find

that the objective and perceptual quality are influenced by

different elements of an image. To achieve the best trade-

off between them, we use stationary wavelet decomposi-

tion (SWT) to split elements related with objective quality

from those related with perceptual quality. Then, we can

optimize each with different targets, with little influence on

the other. This “divide and conquer” strategy was demon-

strated to achieve a good trade-off between the image dis-

tortion and perception, and we believe this can inspire more

follow-up works to further push forward the reconstruction

performance in SISR. Like the conventional style transfer

work [14], we need many iterations to solve the optimiza-

tion problem in (6), which is a little bit time-consuming, i.e.,

around 60 seconds for each sub-band. Inspired by the real-

time artistic style transfer work [11], our future work is to

train a feed-forward network to predict the fused sub-band

which minimizes (6), so that the computational complexity

can be significantly decreased.
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