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ABSTRACT to the learning strategies, SISR methods based on external

L ina based sinale i lution (SISR th (ﬁictionaries can be further divided into methods based on
earning based single image super resolution ( ) metho eighbour embedding [1, 2], sparse coding [3, 4], direct

have achieved n_otgble results, however, they require lar%apping [6, 7, 8,9, 10], and deep learning [11, 12, 13].
datasets for training, and may struggle when there is . . .
Despite their efficiency, methods based on external

a mismatch between the testing and training data. - . . - .
m(aatlonarles require a large dataset for training, whichyma

overcome these drawbacks, we propose an approach, na ) . .
U-FRESH, which only requires a small dataset but caﬂ1Ot be available. Mqre(_)ver, the SR performa}nce IS senogsly
achieve state-of-the-art performance also in the presehce affected by the similarity between the training and testing

training and testing mismatches. We accomplish this b atf; Ig COE.”‘::S(;' wethave _recenttly 5‘73’? :_he de_velobpge‘zlﬂys of
leveraging a method called FRESH, which enhances th ethods wi 'Ct IO no rffe.q.uw?extirna \c |onart|es, Il:alla;t :
image resolution using FRI theory. We start upscaling fro re approximately as efficient as those using externaleiaas

the FRESH generated low resolution image. To minimize thé&-9- [15, 16, 17, 18]. In particular, FRESH [15] leverages t

reconstruction error, we propose a new regression serlectiigeory of sampling signals with finite rate of innovation (FR

technigue to make the mapping more reliable and robust, a 9, I%O] tSO so_l;(e tlre FSII?SEI‘\;Er:)bIe:[mtEndLgb_talns comtﬁetlltlve
a wavelet based back projection technique to improve thEeSUIts. specitically, reats the Image as the low-

quality of the reconstructed image. Based on U-FRESH wRass version of a wavelet decomposition and uses FRI theory

also propose a new framework based on JPEG 2000 for ima 2 infer the miss?ng Wayelet coeﬁicignts. Eac_h image line is.
compression. Numerical results show that our U-FRES odeled as a piece-wise smooth signal, which can be split

method achieves state-of-the-art performance in SISR ar{H:O a piece-wise polynomial and a global smooth functions.

; ; former is reconstructed using FRI theory and the latter
rovides better compression results than JPEG 2000. € for : .
provi P ! . using linear reconstruction. Although FRESH obtains good

Index Terms— single image super resolution, image results, the limitation is that the piece-wise smooth model

compression, local linear regression. assumption is not accurate. Therefore, FRESH performs well
on edges but may struggle otherwise.
1. INTRODUCTION In this paper, we aim to get the best out of the

Single image super resolution (SISR) aims to recover a higﬂNO, approaghes, and we_do so by i”t“’d”cmg U-FRESH
resolution (HR) image from a single low resolution (LR) which combines FRESH with a new low-complexity learning

one. This inverse process is highly ill-posed, because &he I_approach. The key insight here is that learning from externa

image may correspond to many different HR images. In ordefi2tasets is helpful but if strong priors are available, the
to reduce this ambiguity, many methods have been propose{iaining complexity and the size of the external datasets ca
which can be typically classified into two broad categories=be significantly reduced. Compared to other methods, an

methods that use external dictionaries, e.g., [1, 2, 3, 8, 5, important advantage of U-FRESH is that we can achieve

7.8, 9, 10, 11, 12, 13] and methods based on self-learning &etter SISR_ performance with less training images, i.e.,
some forms of constrained reconstruction that do not requir®ly @ fraction of others [4, 5, 8, 9, 7, 10, 11, 12, 13],

external datasets, e.g., [14, 15, 16, 17, 18]. Algorithnas th a_nd we are more resilient to the mism_at_ch (i.e., us_ing

use external dictionaries are based on the idea that eacin pafhfferent blurring kernels) between the training and tegpti

in one image can find similar patches in other images. Bfata. For re§olut|on gnhancement, U'F,RESH employs .the
retrieving the high frequency component from these simila ocal regression learning appro_ach as in [7, 10] but with

patches, the current patch resolution can be enhanced. TR&ME important changes: 1) different from other methods
most popular way to retrieve the high frequency is by leagnin which start upscaling from bicubic interpolated LR images,

the relationship between LR and HR patches. Accordin@j"e start from a higher position, the FRESH generate(_j _LR
images. This allows us to use a smaller dataset for training,

Xin Deng is supported by Imperial CSC scholarship. because the LR images generated by FRESH already contain
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Fig. 1. Framework of the proposed compression method.

many high-frequency details. 2) a new regression selection
algorithm is proposed to make the mapping more reliable and [54
robust.

In addition to SISR, we also apply U-FRESH to image =% g
compression.  Since U-FRESH is built around FRESH ™meims L raining images
which treats LR images as low-pass versions of a wavelet
decomposition, U-FRESH is a natural candidate to imprové&ig. 2. The process of obtaining LR images from HR images.
the performance of JPEG 2000 [21], which is a state-of-theFor each centroid, we further seledtnearest neighbours
art image coding system based on wavelet technology. Wg, form its cluster. We then calculate a linear regression
focus on low bit-rate settings and in our approach, as ShOW{]RZ.}iKzl for each cluster, which maps the LR samples in the

in Fig. 1, instead of directly compressing the HR image c|yster to the corresponding HR samples with the minimum
we perform discrete wavelet transform (DWT) on the HRgyror:
image and only compress the low-pass subband using JPEG
2000. After that, we apply U-FRESH on the decoded low- . J ; in2 5
pass image to upscale it to the original resolution. In trag,w R; = argmmz [h; — Rl |2+ Al Rillz, ()
we can get good compression results even at low bit-rates.

The rest of the paper is organized as follows. In Section v P
2, we introduce the proposed U-FRESH method and shO\)IvVhere{hi j=1 and{£;};_, indicate the HR and LR features

S . : . In the i-th clusterC,. Here, X is a regularization parameter.

how we tailor it for image compression. In Section 3, WeR\ denotinall, — (L, k2, hJ] andL; — €}, £2, .. 0]
show the performance of U-FRESH in both SISR and imag 2); can be \?vritfce:l asi, LA C e D
compression scenarios. Section 4 concludes this paper.

2. PROPOSED APPROACH R; = argmin| H; - RiLl5 + MIRll7 - )

2D wavelet
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2.1. Training

nd ridge regression gives the following closed-form sofut

The training set contains only 20 images randomly selecte )

from BSD300 datas&twhich is much less than those used in _
other methods. Following [15], we first perform 2-D DWT R = HiL{ (L,L{ + M), )

on the HR images to extract the low-pass sub-bands. We thevherel is the identity matrix. The value of is selected via
apply FRESH [15] on the low-pass sub-bands to obtain LRhe validation set, through which we choose the value leadin
images, as Fig. 2 shows. to the minimum regression error.

Patch pairs selection. After obtaining the LR and HR Here, we decided to use linear regression to learn the
patch pairs, we perform feature extraction. The LR-HR patctmappings, instead of other mapping algorithms such asespars
pairs are normalized first, then as in [10], we use the mearcoding, because linear regression is more suited to racmbst
removed LR patch as the LR feature. The HR feature is théhe smooth and textured regions where the FRESH algorithm,
HR patch after removing the mean value of its correspondinwhich our U-FRESH is based on, struggles.

LR patch. For effective training, we remove the smoothz_z_ Reliable Regression Selection

pat_ches with small variance. W(_e _also d|scard_the patch palfbs\fter training, we have obtained regressions{R:}X |
which have low correlation coefficients (CC), since we netic . . K ) &
for clusters with centroid§C;};2;. In the testing, given

that patch pairs with low CC values can degrade the trainin ) ] .
P P 9 %n input LR feature, the most important step is to select

Sgggrrgfgri;hTizegic\:/gan)l/ue between the LR and HR featura reliable regression which can map the LR feature to HR

feature with the smallest error. The traditional way is tokdo

(f1,fr) for the nearest centroid to the input LR feature and select

p(fi,th) = 2Nl @D s corresponding regression matrix to do the mapping [10].

o ) However, this mapping can be unreliable, especially when
where(.) indicates the inner product. the LR feature is located far away from the centroid. Dai

Linear regression.\We use K-means clustering alggrithm et.alhave realised this problem and they proposed to optimize
to split the training set ink” groups with centroid$C';};Z,.  the regression calculation by clustering samples based on
1The training dataset used in this paper can be downloadeu fro the regression instead of sample_ values [9]. Different
https://drive.google.com/file/d/0Bzxdhi861FZacjlkbkIFJCeDg/view?usp=shdfiagn [9], we propose a new technique to select the most




reliable regression for the input LR through estimating theTalole 1 Performance of U-FRESH and other methods with

reconstruction error, with the following three steps: _ . :
. . gt P . _bior4.4 as the blurring kernel, with the best scores bold and
Step 1. Given an input LR feature, instead of searching )
e second bests underlined.

for its nearest centroid, we use k-nearest neighbour (kNN
algorithm to search for itgV nearest centroids. Typically, [Scaling facto 2x 4x
N = 3. Dataset Setb Setl4 Setb Setl4

: PSNR SSIM |PSNR| SSIM [PSNR| SSIM [PSNR SSIM
Step 2. From the samples in théV nearest clusters, ScSR[3] |33.14{0.9323 30.12|0.8804 27.56(0.8072 25.58(0.7064

we selectM nearest samples to the LR input. Thee | zeyde[s] |34.83]0.9459 31.31|0.8989 28.68|0.8360 26.370.7334
LR samples form a subs&,, and their corresponding HR GR[5] |33.96|0.9394 30.71|0.894( 28.15|0.8170 25.95|0.7217
samples form a subsef, . ANR [5] |34.72|0.9453 31.18|0.8987) 28.59|0.8320 26.26(0.731(

NE+LLE [1] | 34.68|0.9444 31.15|0.897¢ 28.52|0.8311 26.23]0.7304
Step 3. From the N nearest clusters, we can hate A+[8] |35.41]0.9491 31.65|0.9022 29.16|0.8504 26.70|0.7440

regressions forming a regressionBgt. For each regression, | selfEx[18] |34.66|0.9439 31.16|0.895§ 28.30|0.8296 26.09|0.731(
we calculate its reconstruction error on thld samples | SRCNN [11]|35.47|0.9493 31.68|0.9024 29.17|0.8504 26.74|0.7447
gathered in Step 2, and choose as the regression the one thafESH [15]] 35.38)0.9487 31.59)0.9012 29.43/ 0.8551 26.77)0.7457

. Ours | 35.65|0.9496 31.93|0.9035 29.65|0.8594 26.95| 0.7494
leads to the smallest error, as formulated in Eq. (5):

Table 2. Performance of U-FRESH and other methods for

M
R= argmin% Z |Am — REw |13, (5)  4x upscaling, with arbitrary blurring kernels.

R m=1 Blurring bior2.4 bior6.8 rbio2.8 |linear spling

whereR € {RN}, h,, € {Sl}tf}’ ande,, € {SIM} kernel Set5|Set14 Set5|Setl4 Set5|Setl4 Set5|Set14

turth N N ved i CSCN[12] [24.44)23.1228.23 26.27| 28.09 26.30|24.96) 23.42
To further enhance the super-resolved image quality, we | psr13] |24.3022.73 28.32 25.93 28.83 26.55/ 24.78 22.95

use another two important steps: the wavelet based back |FRESH [15]29.33 26.74 29.54 26.8929.63 26.96 29.10| 26.54
projection (WBP) and ensemble learning based resolution Ours  |29.5426.87]29.68 26.96|29.71) 27.00/29.40 26.77
enhancement. WBP is to ensure that the estimated Hg

image is consistent with the input LR image. Recall tha . Allthe test pictures were changed from RGB to YCbCr

we treat LR images as the low-pass sub-band of the H rmat and only the luminance channel was used for testing.

images. Thus, given the super-resolved HR image, we Parameters setting In the training, the threshold for
do wavelet deciomposition, and replace its low-pass ’banbemoving smooth patches is 0.5 and the threshold of CC value

with the original LR input but keep its high-pass sub-band<® 0.65. In the regression stepis 0.01. In reliable regression

unchanged. Finally, benefitting from the power of ensemblgdecnon’ we us& =2048,V=3 and/=128. The patch size

learning [22], we create different variations of LR imagesIs 5x5 for upscaling by 2_and>99 for upscahng b¥4' .
through affine transformation, i.e., four LR variations twit SISR performance Since the blurring kemel in practical

rotations{0, 90, 180, 270} and average their HR estimates to scenario usually cannot be predicted, we evaluated the SISR
obtain the f}nai HRvimage performance of our method in two cases: 1) the training

In this paper, the cascaded structure is employed t nd testing processes use the same blurring kernel; 2) the

implement upscaling for scaling factors larger than 2,,e.g.tﬁi'?ggéogfrsir‘:‘gutsﬁj t?;?r:ti?g;ry ggg{éng ';ﬁgxslstﬁ'eﬁ:fgﬁ?q and
b eSS [24] e of o and thr method n e 1t cae
. : o or fair comparison, the blurring kernel in all methods was
thatthe sgcohd U_F.RESH regressm_ns need to be re_tralned|:*r1odified to bebior4.4 as [15], and all the dictionaries and
2.3. Application to image compression network were retrained using this kernel. We can see that
To apply U-FRESH to image compression, we need tqur method consistently outperforms all the other methods.
establish a training dataset different from that of SISR. |rspecifica||y, for 2« upsca”ng, we improve PSNR by 0.18
the context of image compression, as shown in Fig.1, thgB in Set5 and 0.25 dB in Set14, compared with the second
U-FRESH algorithm is used to map the decoded low-pasgest SRCNN [11]. For # upscaling, we achieve 0.22 dB
images to the HR images. Thus, to prepare the LR trainin@SNR improvement in Set5 and 0.18 dB improvement in Set
images, we first do DWT on the HR image to get the low-pas3 4, compared with the second best FRESH[15]. Note that we
images and then apply JPEG 2000 to compress them. Aftghly use 20 training images while others [1, 3, 4, 5, 8, 11] use
that, we perform FRESH on the decoded low-pass images 91 images. We can use less training images and still achieve
obtain the LR training images. The mappings between the LRetter SR performance, because the FRESH generated LR
and HR pairs are re-trained for image compression. images already include some high frequency details which
3. EXPERIMENTAL RESULTS d_o not need tq be recc_)vered again from trair_1ing images. For
' visual comparisons, Fig. 3 shows the dipscaling results on
In the experiments, two datasets were used for testind@@utterfly We can see that our U-FRESH method can generate

including 5 images from Set5 [23] and 14 images from Setl4harper edges with less ringing artifacts.



(e) A+ (24.5/0.8469) (f) SRCNN (25.0/0.8590) (g) FRESH (25.6/0.8738)
Fig. 3. SISR results oButterflyby our and other methods with<4upscaling. The values in the bracket are PSNR/SSIM.

Table 2 presents the PSNR results of our method in the
second case, i.e., the testing process uses differentl&erne
from the training which usesior4.4. We compare the results
with other two state-of-the-art deep learning based method
CSCNJ12] and VDSR[13], and we can see that our method is
more resilient to the mismatches in the blurring kerneldevhi
[12] and [13] can be seriously affecfee.qg.,bior2.4kernel.

Image compression performance We compare our
compression results with JPEG 2000 at different bit rates,
with the improvements shown in Table 3. As can be seen, our
compression method improves significantly over JPEG 2000
at small bit rates. Specifically, at 0.2 bit per pixel (bppg w
achieve nearly 0.4 dB improvement over JPEG 2000 in Set
14. Fig. 4 compares visually the compressed images and
we can see that our method achieves higher reconstruction
quality than JPEG 2000.

Table 3. The improvement of our method over JPEG 2000.

GT JPEG2000

oy
o 24

Al
n/
)

(h) Ours 6.30.8879

Ours

GoTen |

(c) 25.94dB/0.7924
F W)
[ \

(f) 36.85dB/0.9418

Bitrate Set5 Setl4

(bpp) [ PSNR | SSIM | PSNR | SSIM ;

0.08 00987 00071 022511 0 0045 (g) Butterfly (h) 25.45dB/0.8196 (i) 27.10dB/0.8700

0.1 | 0.1807| 0.0080 | 0.3423 | 0.0090 _ _

0.2 | 0.3337| 0.0101 | 0.3985| 0.0000 Fig. 4. Results of images compressed by JPEG 2000 and
0.3 | 0.3635| 0.0086 | 0.1786 | -0.0039 our method. The compression bitrate is 0.3 bpp. The values

shown are PSNR/SSIM. Better seen in enlarged version.

4. CONCLUSION

regression selection technique to make mapping robust and
In this paper, we propose an U-FRESH method for SISR andse wavelet based back projection to eliminate reconarct
image compression. Benefitting from FRESH, our methodrrors. Our method combines the merits of learning based
only needs a small dataset for training. We develop a r&iablgnd signal processing based methods, achieving nearly 0.3

2Here, we simply use the trained network of [12] and [13] whicte

dB PSNR improvement over other state-of-the-art methods in

bicubicas training kernel. In our method, the training kernddiez4.4, which _SISR and 0.4dB _imprOV_ement over JPEG 2000 in low bit-rate
is also different from the testing kernels. Image compression regime.
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