Spectral Transformations of
IIR Digital Filters

* Objective - Transform a given lowpass digital
transfer function G, (z) to another digital
transfer function Gp(2) that could be a
lowpass, highpass, bandpass or bandstop filter

« z™! has been used to denote the unit delay in
the prototype lowpass filter G;(z) and 2
to denote the unit delay in the transformed
filter Gp(2) to avoid confusion
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Spectral Transformations of
IIR Digital Filters

e Unit circles in z- and 2 -planes defined by
z=e/®, 2=¢/?
 Transformation from z-domain to
2-domain given by
z=F(2)
e Then
Gp(8)=GL{F(2)}
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Spectral Transformations of
IIR Digital Filters

* From z=F(2), thus |z|=|F(2)

>1, if z]>1

=1, if ‘z‘ =1

<1, if|z]<1

* Therefore 1/ F(2) must be a stable allpass

, hence

IF(2)

Lowpass-to-Lowpass
Spectral Transformation

* To transform a lowpass filter G,(z) with a
cutoff frequency @, to another lowpass filter
Gp(2) with a cutoff frequency @., the
transformation is

. L _1-az
.. F (2?1 2-a

e On the unit circle we have

—jo _ €_jo> -

l-ae®

e
which yields
tan(e/2) = Gf—gj tan(d/2)
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Lowpass-to-Lowpass

Spectral Transformation
* Solving we get o sin((w, —@,)/2)
sin((w, +@,)/2)
» Example - Consider the lowpass digital filter

0.0662(1+z71)}
G, (2)= d+z)

(1-0.2593z7")(1-0.6763z"' +0.3917z7%)
which has a passband from dc to 0.257z with
a 0.5 dB ripple

* Redesign the above filter to move the
passband edge to 0.357z
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Lowpass-to-Lowpass
Spectral Transformation
* Here __sin(0.057) _

"~ sin(0.37)
» Hence, the desired lowpass transfer function is

Gp(2)=G(2)

—-0.1934

121401934
1+40.19342"
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Lowpass-to-Lowpass
Spectral Transformation

* The lowpass-to-lowpass transformation

g_ 1 1-az
zo = ==
F(f) z—0O
can also be used as highpass-to-highpass,

bandpass-to-bandpass and bandstop-to-
bandstop transformations
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Lowpass-to-Highpass
Spectral Transformation

¢ Desired transformation
4 lta
z =— -
1+az

* The transformation parameter & is given by
__cos((w.+®,)/2)
"~ cos((w, —®,)/2)
where @, is the cutoff frequency of the

lowpass filter and @, is the cutoff frequency
of the desired highpass filter
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Lowpass-to-Highpass
Spectral Transformation
» Example - Transform the lowpass filter

0.0662(1+2")’
GL (Z) = 1 ( 21 )
(1-0.2593z7)(1-0.6763z" +0.3917z"°)
+ with a passband edge at 0.257z to a highpass
filter with a passband edge at 0.557

* Here o =—co0s(0.47)/cos(0.157) =—-0.3468
* The desired transformation is

Ao 21-0.3468

1-0.346827"
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Lowpass-to-Highpass
Spectral Transformation

* The desired highpass filter is

Gp(2)=G(2) £7-0.3468

1-0.3468 2™

z =

0 02n  04n  0.6m  0.8n T
Normalized frequency
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Lowpass-to-Highpass
Spectral Transformation

* The lowpass-to-highpass transformation can
also be used to transform a highpass filter
with a cutoffat @, to a lowpass filter with
a cutoff at @,

« and transform a bandpass filter with a center
frequency at @, to a bandstop filter with a
center frequency at @,
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Lowpass-to-Bandpass
Spectral Transformation
e Desired transformation
;2 208 o Bl
o : ﬂ+f +,B+1

oo
B-l,2 208
p+1 p+1
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Lowpass-to-Bandpass
Spectral Transformation

* The parameters o and f are given by
_cos((d,, +,,)/2)
- cos((@e = @) /2)
B =cot((d,, —d.)/2)tan(®, /2)
where @, is the cutoff frequency of the
lowpass filter, and @, and@,, are the

desired upper and lower cutoff frequencies
of the bandpass filter
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Lowpass-to-Bandpass
Spectral Transformation

Special Case - The transformation can be
simplified if @,=®,,—-d,
Then the transformation reduces to
-1 a1 2_1 -
z =—Z P
-z

where o =cos®, with @, denoting the
desired center frequency of the bandpass
filter
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Lowpass-to-Bandstop
Spectral Transformation

¢ Desired transformation

2—2_205/32—1+1—/3
e 1+ 1+

128 2 205 1)

1+p 1+p
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Lowpass-to-Bandstop
Spectral Transformation

The parameters « and f are given by
_c08((@, +@,)/2)
- cos((@, = @) /2)
B =tan((@,, — @)/ 2)tan(w, /2)
where @, is the cutoff frequency of the
lowpass filter, and @, and@,, are the

desired upper and lower cutoff frequencies
of the bandstop filter
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Least Integral-Squared Error
Design of FIR Filters

« Let H (e’®) denote the desired frequency
response
* Since H, (€’®)is a periodic function of @
with a period 27, it can be expressed as a
Fourier series
Hy(e’”y= Y hy[nle”’™

n=—oo

where

ﬂ . .
h,[n]= 721 TH (/°)e/™dw, —oo<n<eos
T

-

Copyright © S. K. Mitra

Least Integral-Squared Error
Design of FIR Filters

In general, H (/) is piecewise constant
with sharp transitions between bands

In which case, {h,[n]} is of infinite length
and noncausal

Objective - Find a finite-duration {/,[n]}

of length 2M+1 whose DTFT H,(e’?)
approximates the desired DTFT H,(e’?) in
some sense

Copyright © S. K. Mitra




Least Integral-Squared Error
Design of FIR Filters

e Commonly used approximation criterion -
Minimize the integral-squared error

T . . 2
d)zi | ‘Ht(ef“’)—Hd(ef“’)‘ dw
27 2,

where
. M .
H,(e’*)= Y h[nle”’™
n=—M
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Least Integral-Squared Error
Design of FIR Filters

e Using Parseval’s relation we can write

= z\h [n]-hy[n]’

L5 =
= Slhlnl-hyn)’ + X K]+ Shin]
n=—M n=—oco n=M+l1
e It follows from the above that @ is

minimum when A, [n] = h,[n] for—M <n<M
e = Best finite-length approximation to ideal

infinite-length impulse response in the

mean-square sense is obtained by truncation
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Least Integral-Squared Error
Design of FIR Filters

e A causal FIR filter with an impulse response
h[n] can be derived from 4,[n] by delaying:

h[n]=h[n—M]

* The causal FIR filter A[n] has the same
magnitude response as /,[#] and its phase
response has a linear phase shift of @M
radians with respect to that of 4,[#]
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Impulse Responses of Ideal
Filters

¢ Ideal lowpass filter -

Hyp(e®)

[t] sma)n
hLP[n]— , —o<n<oo

—we 0 wc

¢ Ideal hlghpass filter -

Hyp(e ) [0)

Impulse Responses of Ideal
Filters
* Ideal bandpass filter -

Hyp(e'®)

—T —@c2 ~tel @cl @c2 T

sin(@.,n) sin(w.n)
mm  nmn

hgpln]=
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—7> n=0
HP[n]

L smgg?) n), 020
Impulse Responses of Ideal
Filters

* Ideal bandstop filter -
Hys(e™)
1— (wcz a2 cl) n=0

hsslnl= sin(@,n) _sin(@,,n)

m m ?

nz0
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Impulse Responses of |deal
Filters
¢ Ideal multiband filter -
HML(ejw) =4,

W S0y,
o k=12,...,L

& sin(®, n
Iy [n]= 2 (4, —Am)'%
=1
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Impulse Responses of Ideal
Filters

¢ Ideal discrete-time Hilbert transformer -
j, —wm<w<0

HHT(ejw) ={

-j, O<w<rm

0, forn even

h =
rl] {Z/nn, for n odd
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Impulse Responses of Ideal
Filters

¢ Ideal discrete-time differentiator -

Hpp (™) = jo, 0<lo<m

0, n=0
hpip[n]=1 coszn n20
n b
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Gibbs Phenomenon

* Gibbs phenomenon - Oscillatory behavior in

the magnitude responses of causal FIR filters
obtained by truncating the impulse response
coefficients of ideal filters

1.5

Magnitude
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Gibbs Phenomenon

e As can be seen, as the length of the lowpass
filter is increased, the number of ripples in
both passband and stopband increases, with
a corresponding decrease in the ripple
widths

 Height of the largest ripples remain the
same independent of length

* Similar oscillatory behavior observed in the

magnitude responses of the truncated
versions of other types of ideal filters
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Gibbs Phenomenon

Gibbs phenomenon can be explained by
treating the truncation operation as an
windowing operation:

hy[n]= h[n]-win]

In the frequency domain

. T . .
H(&) = [H ")) dp
=T

where H t(ej “) and W(e’?) are the DTFTs
of h[n] and wln], respectively
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Gibbs Phenomenon

« Thus H,(e’®) is obtained by a periodic
continuous convolution of H (e’ “) with
Y(e’?)
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Gibbs Phenomenon

* If ¥(e/?)is a very narrow pulse centered at
o =0 (ideally a delta function) compared to
variations in H ,(e’®), then H,(e’®) will
approximate H ;(e’®) very closely

* Length 2M+1 of w[n] should be very large

* On the other hand, length 2M+1 ofh,[n]
should be as small as possible to reduce
computational complexity
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Gibbs Phenomenon

* A rectangular window is used to achieve
simple truncation:

(1] L, 0<|n<M
wpln]=
R 0, otherwise

Presence of oscillatory behavior in H,(e/®)
is basically due to:
— 1) hy[n] is infinitely long and not absolutely
summable, and hence filter is unstable
— 2) Rectangular window has an abrupt transition
to zero
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Gibbs Phenomenon

* Oscillatory behavior can be explained by
examining the DTFT Wx(e’®) of wgln]:

Rectangular window

30

Amplitude

4 0.5 0 05 1
/n

R (ejw) has a main lobe centered atw =0
e Other ripples are called sidelobes
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Gibbs Phenomenon

* Main lobe of W, (e’?) characterized by its
width4m/(2M +1) defined by first zero
crossings on both sides of @ =0

* As M increases, width of main lobe
decreases as desired

* Area under each lobe remains constant
while width of each lobe decreases with an
increase in M

« Ripples in H,(e’®) around the point of
discontinuity occur more closely but with
no decrease in amplitude as M increases
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Gibbs Phenomenon

» Rectangular window has an abrupt transition
to zero outside the range — M <n <M, which
results in Gibbs phenomenon in H,(e’®)

* Gibbs phenomenon can be reduced either:

(1) Using a window that tapers smoothly to
zero at each end, or

(2) Providing a smooth transition from
passband to stopband in the magnitude
specifications
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