Digital Filter Design

- <u>Objective</u> Determination of a realizable transfer function *G*(*z*) approximating a given frequency response specification is an important step in the development of a digital filter
- If an IIR filter is desired, G(z) should be a stable real rational function
- Digital filter design is the process of deriving the transfer function *G*(*z*)

Copyright © 2001, S. K. Mitra

Digital Filter Specifications

- Usually, either the magnitude and/or the phase (delay) response is specified for the design of digital filter for most applications
- In some situations, the unit sample response or the step response may be specified
- In most practical applications, the problem of interest is the development of a realizable approximation to a given magnitude response specification

Copyright © 2001, S. K. Mitra

Copyright © 2001, S. K. Mitra

Digital Filter Specifications

- As the impulse response corresponding to each of these ideal filters is noncausal and of infinite length, these filters are not realizable
- In practice, the magnitude response specifications of a digital filter in the passband and in the stopband are given with some acceptable tolerances
- In addition, a transition band is specified between the passband and stopband

- ω_p passband edge frequency
- ω_s stopband edge frequency
- δ_p **peak ripple value** in the passband
- δ_s peak ripple value in the stopband
- Since $G(e^{j\omega})$ is a periodic function of ω , and $|G(e^{j\omega})|$ of a real-coefficient digital filter is an even function of ω
- As a result, filter specifications are given only for the frequency range $0 \le |\omega| \le \pi$

Copyright © 2001, S. K. Mitra

Digital Filter Specifications

- Specifications are often given in terms of loss function $G(\omega) = -20\log_{10} |G(e^{j\omega})|$ in dB
- Peak passband ripple $\alpha_p = -20 \log_{10}(1 - \delta_p) \text{ dB}$
- Minimum stopband attenuation $\alpha_s = -20 \log_{10}(\delta_s) \text{ dB}$

Copyright © 2001, S. K. Mitra

Digital Filter Specifications

- For the normalized specification, maximum value of the gain function or the minimum value of the loss function is 0 dB
- Maximum passband attenuation - $\alpha_{\text{max}} = 20 \log_{10} (\sqrt{1 + \varepsilon^2}) \text{ dB}$
- For $\delta_p \ll 1$, it can be shown that $\alpha_{\max} \cong -20\log_{10}(1-2\delta_p) \text{ dB}$

Selection of Filter Type

- The transfer function *H*(*z*) meeting the frequency response specifications should be a causal transfer function
- For IIR digital filter design, the IIR transfer function is a real rational function of z^{-1} :

$$H(z) = \frac{p_0 + p_1 z^{-1} + p_2 z^{-2} + \dots + p_M z^{-M}}{d_0 + d_1 z^{-1} + d_2 z^{-2} + \dots + d_N z^{-N}}$$

j

H(*z*) must be a stable transfer function and must be of lowest order *N* for reduced computational complexity

Selection of Filter Type

• For FIR digital filter design, the FIR transfer function is a polynomial in z^{-1} with real coefficients:

$$H(z) = \sum_{n=0}^{N} h[n] z^{-n}$$

- For reduced computational complexity, degree *N* of *H*(*z*) must be as small as possible
- If a linear phase is desired, the filter coefficients must satisfy the constraint: $h[n] = \pm h[N-n]$

Copyright © 2001, S. K. Mitra

Digital Filter Design: Basic Approaches

- Most common approach to IIR filter design (1) Convert the digital filter specifications into an analog prototype lowpass filter specifications
- (2) Determine the analog lowpass filter transfer function $H_a(s)$
- (3) Transform $H_a(s)$ into the desired digital transfer function G(z)

Copyright © 2001, S. K. Mitra

Digital Filter Design: Basic Approaches

• This approach has been widely used for the following reasons:

(1) Analog approximation techniques are highly advanced

(2) They usually yield closed-form solutions

(3) Extensive tables are available for analog filter design

(4) Many applications require digital simulation of analog systems

Digital Filter Design: Basic Approaches

• An analog transfer function to be denoted as

$$H_a(s) = \frac{P_a(s)}{D_a(s)}$$

where the subscript "*a*" specifically indicates the analog domain

• A digital transfer function derived from $H_a(s)$ shall be denoted as

Copyright © 2001, S. K. Mitra

Copyright © 2001, S. K. Mitra

$$G(z) = \frac{P(z)}{D(z)}$$

Digital Filter Design: Basic Approaches

- Basic idea behind the conversion of $H_a(s)$ into G(z) is to apply a mapping from the *s*-domain to the *z*-domain so that essential properties of the analog frequency response are preserved
- Thus mapping function should be such that
 - Imaginary $(j\Omega)$ axis in the *s*-plane be mapped onto the unit circle of the *z*-plane
 - A stable analog transfer function be mapped into a stable digital transfer function

Copyright © 2001, S. K. Mitra

Copyright © 2001, S. K. Mitra

Digital Filter Design: Basic Approaches

- FIR filter design is based on a direct approximation of the specified magnitude response, with the often added requirement that the phase be linear
- The design of an FIR filter of order N may be accomplished by finding either the length-(N+1) impulse response samples {h[n]} or the (N+1) samples of its frequency response H(e^{im})

Digital Filter Design: Basic Approaches

- Three commonly used approaches to FIR filter design -
 - (1) Windowed Fourier series approach
 - (2) Frequency sampling approach
 - (3) Computer-based optimization methods

IIR Digital Filter Design: Bilinear Transformation Method

• Bilinear transformation -

$$s = \frac{2}{T} \left(\frac{1 - z^{-1}}{1 + z^{-1}} \right)$$

- Above transformation maps a single point in the *s*-plane to a unique point in the *z*-plane and vice-versa
- Relation between G(z) and $H_a(s)$ is then given by $G(z) = H_a(s)|_{s=\frac{2}{T}\left(\frac{1-z^{-1}}{1+z^{-1}}\right)}$

• Digital filter design consists of 3 steps:
(1) Develop the specifications of
$$H_a(s)$$
 by applying the inverse bilinear transformation

Diling on Transformation

- applying the inverse bilinear transform to specifications of G(z)
- (2) Design $H_a(s)$
- (3) Determine G(z) by applying bilinear transformation to $H_a(s)$
- As a result, the parameter *T* has no effect on G(z) and T = 2 is chosen for convenience

Bilinear Transformation

- Mapping is highly nonlinear
- Complete negative imaginary axis in the *s*-plane from $\Omega = -\infty$ to $\Omega = 0$ is mapped into the lower half of the unit circle in the *z*-plane from z = -1 to z = 1
- Complete positive imaginary axis in the *s*plane from $\Omega = 0$ to $\Omega = \infty$ is mapped into the upper half of the unit circle in the *z*-plane from z = 1 to z = -1

$$H_a(s)|_{s=\frac{1-z^{-1}}{1+z^{-1}}} = \frac{\Omega_c(1+z^{-1})}{(1-z^{-1})+\Omega_c(1+z^{-1})}$$

Copyright © 2001, S. K. Mitra

IIR Digital Filter Design Using Bilinear Transformation

- <u>Example</u> Design a 2nd-order digital notch filter operating at a sampling rate of 400 Hz with a notch frequency at 60 Hz, 3-dB notch bandwidth of 6 Hz
- Thus $\omega_o = 2\pi (60/400) = 0.3\pi$ $B_w = 2\pi (6/400) = 0.03\pi$
- From the above values we get

$$\alpha = 0.90993$$

$$\beta = 0.587785$$

Design of IIR Highpass, Bandpass, and Bandstop Digital Filters

(4) Convert $H_{LP}(s)$ into $H_D(s)$ using inverse frequency transformation used in Step 2

(5) Design desired digital filter $G_D(z)$ by applying bilinear transformation to $H_{LP}(s)$

Copyright © 2001, S. K. Mitra

Copyright © 2001, S. K. Mitra

Design of IIR Highpass, Bandpass, and Bandstop Digital Filters

• Second Approach -

(1) Prewarp digital frequency specifications of desired digital filter $G_D(z)$ to arrive at frequency specifications of analog filter $H_D(s)$ of same type

(2) Convert frequency specifications of $H_D(s)$ into that of prototype analog lowpass filter $H_{LP}(s)$

Copyright © 2001, S. K. Mitra

Design of IIR Highpass, Bandpass, and Bandstop Digital Filters

(3) Design analog lowpass filter H_{LP}(s)
(4) Convert H_{LP}(s) into an IIR digital

(4) Convert $T_{LP}(s)$ into an fix digital transfer function $G_{LP}(z)$ using bilinear transformation

(5) Transform $G_{LP}(z)$ into the desired digital transfer function $G_D(z)$

• We illustrate the first approach

IIR Highpass Digital Filter Design

- Design of a Type 1 Chebyshev IIR digital highpass filter
- Specifications: $F_p = 700$ Hz, $F_s = 500$ Hz, $\alpha_p = 1$ dB, $\alpha_s = 32$ dB, $F_T = 2$ kHz
- Normalized angular bandedge frequencies

$$\omega_p = \frac{2\pi F_p}{F_T} = \frac{2\pi \times 700}{2000} = 0.7\pi$$
$$\omega_s = \frac{2\pi F_s}{F_T} = \frac{2\pi \times 500}{2000} = 0.5\pi$$

