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Discrete-Time Fourier Transform

e Definition - The Discrete-Time Fourier
Transform (DTFT) X(e/?) of a sequence
x[n] 1s given by

X(e’®) = ix[n]e‘j(” !

e In general, X(e/®) is a complex function
of the real variable ® and can be written as

X(")= X (/) + ) X (')



Discrete-Time Fourier
Transform

* X_(e’*) and X, (e/®) are, respectively,
the real and imaginary parts of X (e/®), and
are real functions of ®

e X (e/®)can alternately be expressed as
X (e/®) = X (e/®)e/%)
where
O(w) =arg{X (e/*)}



Discrete-Time Fourier
Transform

‘X (e/ (D)‘ 1s called the magnitude function
O(w) is called the phase function
Both quantities are again real functions of ®

In many applications, the DTFT 1s called
the Fourier spectrum

Likewise, ‘X (e’ “’)‘ and 0(w) are called the
magnitude and phase spectra



Discrete-Time Fourier
Transform

X = X ()X ()

X, (") =|X (")

cosf(m)
X, (e")=|X(e")

sin B()

X = X2(e)+ X2 (")

Xim (ej@)
X . (e’)

tan O(w) =



Discrete-Time Fourier Transform

» For a real sequence x[#n],

X(ef‘”)‘ and X_(e’?) are

even functions of @, whereas, 0(®) and X._(e’*)
are odd functions of ® (Prove using previous slide relationships)

* Note: X(e/?) = X(e/?)
= X (e/®)

for any integer k

o J0(@+21k)

£/8(0)

. ‘ The phase function 6(®) cannot be uniquely

specified for any DTFT



Discrete-Time Fourier
Transform

e Unless otherwise stated, we shall assume

that the phase function 6(w) 1s restricted to
the following range of values:

-n<0(w) <7

called the principal value



Discrete-Time Fourier

Transform

 The DTFTs of some sequences exhibit
discontinuities of 27 in their phase
responses

* An alternate type of phase function that 1s a
continuous function of w 1s often used

* [t 1s derived from the original phase
function by removing the discontinuities of

27



Discrete-Time Fourier
Transform

* The process of removing the discontinuities
1s called “unwrapping”

* The continuous phase function generated by
unwrapping 1s denoted as 0_.(w)

* In some cases, discontinuities of © may be
present after unwrapping



Discrete-Time Fourier
Transform

» Example - The DTFT of the unit sample
sequence o[n] 1s given by

Aw)= ¥8[nle /™ =3[0]=1

N=—00
» Example - Consider the causal sequence
1 n>0

\O otherwise

x[n]=a" uy[n], ‘a‘ <1, y[n] =+



Discrete-Time Fourier
Transform
* Its DTFT 1is given by

X(ejo)) _ Zanu[n]e—jmn _ Zane—jmn
N=—00 n=0

w L]

_ —joyn 1

= ae = :
I’ZEO( ) 1—0(.6_]60

as ‘oce_jm‘z\ockl



Discrete-Time Fourier
Transform

* The magnitude and phase of the DTFT
X(e’®)=1/(1-0.5¢"/") are shown below
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Discrete-Time Fourier
Transform

» The DTFT X (e/®) of a sequence x[n] is a
continuous function of ®

* It 1s also a periodic function of w with a
period 27

X(e j(c00+27ck)) _ %x[n]e— j(o,+21k)n
Nn=—00

= Y fnle /"I = 3 dnle /" = X (/%)

Nn=—00 Nn=—00



Discrete-Time Fourier
Transform

e Inverse Discrete-Time Fourier Transform:
1

T
o [ X (”)e’!®"do
e

—Tt

x[n]=

 Proof:

( OZO: x[(]e” /e )ej YMdw

f=—00

= |

T



Discrete-Time Fourier
Transform

* The order of integration and summation can
be mterchanged if the summation inside the
brackets converges uniformly, i.e., X (e’®)
exists

e« Then — j ( _jmgjej(””doo

f=—00

< 1t emes sin 7z(n— 1)
_ zx[z][zﬂ j a’(o] Zx s



Discrete-Time Fourier

Transform
« Now sinm(n—Y) :{ I, n=/{
n(n—1) 0, n+/
=0[n—/]
e Hence
S D S st — 0] = ]

(=—00 m(n—1) {=—00



Discrete-Time Fourier
Transform

* Convergence Condition - An infinite
series of the form

X(e™)= Txinle™ "
N=—00
may or may not converge
* Consider the following approximation

X (@)= Safnleo"
n=—K



Discrete-Time Fourier Transform

Then for uniform convergence of X (e/®),
lim \X(ef‘*’) ~ Xy (ejm)‘ )
K—o0

If x[n] 1s an absolutely summable sequence, 1.e., 1f

ix[n] < o0
X (e/®) = ﬁx[n]e_jw” < ﬁx[n]<oo

for all values of ®

Thus, the absolute summability of x[#] 1s a sufficient
condition for the existence of the DTFT



Discrete-Time Fourier
Transform

« Example - The sequence x[n]=a"p[n] for

o <1 is absolutely summable as
|

= < 00
1ol

> o uln]= 3.

N=—00 n=0

an

and therefore 1ts DTFT X (e/®) converges
to 1/(1-a.e’?) uniformly



Discrete-Time Fourier
Transform

e Since

o0 o0 2
> x[n]” s( Zx[n]j ,

N=—00 N=—00
an absolutely summable sequence has
always a finite energy

 However, a finite-energy sequence 1s not
necessarily absolutely summable



Discrete-Time Fourier Transform

 Example - The sequence

1/n, n=>1
xnl=3 "0 n<o0

has a finite energy equal to
2 2
© (1 I
- 5[]
n=1\" 6
 However, x[n] 1s not absolutely summable since the

summation
ZOO 1 Z 1
e : e

n=I n n=I n

does not converge.



Discrete-Time Fourier Transform

To represent a finite energy sequence that 1s not
absolutely summable by a DTFT, it 1s necessary to
consider a mean-square convergence of X (e’®)

. .2
X (€)= X ¢ (e’®) dw=0

TU
lim |
K—o© -
where

X (@)= Yafnle o
n=—K



Discrete-Time Fourier
Transform
* Here, the total energy of the error
X (&)= Xk (e)

must approach zero at each value of ® as K
goes 1o oo

* In such a case, the absolute value of the
error | X (e/®)— X (e’®) may not go to
zero as K goes to oo and the DTFT 1s no
longer bounded




Discrete-Time Fourier
Transform

e Example - Consider the DTFT
1, 0<w<m,

0, o, <®<T

HLP(ejm) =

shown below

Hp(e!®)




Discrete-Time Fourier Transform
* The inverse DTFT of H;p(e’®) is given by

1 e
hpln]=_— | e/*"do
2T,

n n

1 [e/™" e /%" ) sinw.n
— , —00 < 11 < 00
27 nn

* The energy of A;p[n]is given by ®,. /T

(See slide 46 for proof. Parseval’s Theorem stated in slide 37 is used).

. ‘ hypln]is a finite-energy sequence,
but 1t 1s not absolutely summable



Discrete-Time Fourier

Transform
As a result
- _ion X sino.n e
n:Z_:[]gLP[n]e / _n:Z—K . /

does not uniformly converge to H;p (ej ) |

for all values of , but converges to H; p(e’®)
in the mean-square sense



Discrete-Time Fourier
Transform

e The mean-square convergence property of
the sequence /4 p[n] can be further
illustrated by examining the plot of the
function

SINW.A o

. K
Joy _
Hyp g(e’™) n:Z—K e

for various values of K as shown next



Fourier

Discrete-Time

Transform

N =40

o/n




Discrete-Time Fourier
Transform

* As can be seen from these plots, independent
of the value of K there are ripples in the plot
of Hyp x(e’”) around both sides of the
point ® = m,

* The number of ripples increases as K

increases with the height of the largest ripple
remaining the same for all values of K



Discrete-Time Fourier

Transform
* As K goes to infinity, the condition

. 2
hm [ ) do=0

—Tt

holds indicating the convergence of H;p K(e ?)
to HLP (ejm)

* The oscillatory behavior of Hyp «(e’®)
approximating H; p(e’®) in the mean-
square sense at a point of discontinuity 1s
known as the Gibbs phenomenon




Discrete-Time Fourier

Transform

 The DTFT can also be defined for a certain
class of sequences which are neither
absolutely summable nor square summable

« Examples of such sequences are the unit
step sequence w[n], the sinusoidal sequence
cos(mw,n + ) and the exponential sequence A"

 For this type of sequences, a DTFT
representation 1s possible using the Dirac
delta function o(m)



Discrete-Time Fourier
Transform

* A Dirac delta function o(w) 1s a function of

@ with mfinite height, zero width, and unit
area

* It 1s the limiting form of a unit area pulse

function p, (®) as A goes to zero, satistying

" o 1| Pal@)

lim [p, (0)do= [5(w)do A
A—0_ .

N[>
(@)
N[>



Discrete-Time Fourier
Transform

» Example - Consider the complex exponential
sequence

x[n] = e/®"

* Its DTFT 1s given by
X(®)= Y2n8(0-w, +21k)

k=—00

where 0(w) 1s an impulse function of w and
—MTSW, =T



Discrete-Time Fourier
Transform

e The function

X ()= Y2nd(o-o, +21k)
k=—0o0
1s a periodic function of w with a period 27
and 1s called a periodic impulse train

» To verify that X(e’”) given above is
indeed the DTFT of x[n]=e’""" we
compute the inverse DTFT of X (e/®)



Discrete-Time Fourier

Transform
 Thus
x[n] = RS ch §2nﬁ(a) —, +21k)e’ dw
2T _mnk=—0

Tt . .
= [d(o—m,)e’" dn=e’™"
—T
where we have used the sampling property
of the impulse function 5(w)



Commonly Used DTFT Pairs

Sequence DTFT
oln] < 1
1 & > 2no(w+2nk)
k=—00

e’®" & Y 21d(0—w, +21k)
k=—00

W] & 4 Srs(e+2mk)

1— e_J k=—o0
|

l—ae

unl, (e <1l) <«

J®



DTFT Properties

There are a number of important properties
of the DTFT that are useful in signal
processing applications

These are listed here without proof
Their proofs are quite straightforward

We 1llustrate the applications of some of the
DTFT properties



Table: General Properties of DTFT

Type of Property Sequence Discrete-Time Fourier Transform
gln] G(el®)
h[n] H(e/?)
Linearity agln] + Bh[n] aG(e!®) + BH(e/®)
Time-shifting gln — nyl e~/ WMo G (@)
Frequency-shifting e/ g[n] G (ef (w—wv))
Differentiation .dG(el®)
. ngln] J——
in frequency dw
Convolution g[nl®h[n] G(e/?9)H (/)
Modulation g[nlhln] o [T G(el)H(e/ @) dp
o0 1 (7 : .
Parseval’s relation Z glnh*[n] = — f Ge/YH*(e/?)dw
27 Jn

n=-—00




Table: Symmetry relations of the
DTFT of a complex sequence

Sequence  Discrete-Time Fourier Transform

x[n] X (e/®)
x[=n] X (e=/@)
x*[—=n] X*(el®)

Re(x[n]}  Xes(e/®) = 3{X(e/®) + X*(e™/9))
Jim{x[n]}  Xca(e/®) = 3{X (/) — X*(e™/?))
sz[n] ch (ejw)

Xcan] JXim(e/®)

Note: Xcs(e_f“’) and Xca(e/®) are the conjugate-symmetric and conjugate-antisymmetric
parts of X (e/®), respectively. Likewise, xcs[n] and x¢4[n] are the conjugate-symmetric and
conjugate-antisymmetric parts of x[n], respectively.

x[n]: A complex sequence



Table: Symmetry relations of
the DTFT of a real sequence

Sequence Discrete-Time Fourier Transform
x[n] X (/) = Xre(e/®) + jXim(e/®)
xev[n] Xre(e/®)

Xod[n] J Xim(e’®)

X(e/?) = X*(e™/®)
Xre(e!®) = Xre(e /%)
Symmetry relations Xim (e/?) = —Xim(e™7/?)
X (/)] = X (™)
arg{X (e/%)} = —arg{X (e ~/®)}

Note: xey[n] and xyq[n] denote the even and odd parts of x[n], respectively.

x[n]: A real sequence



DTFT Properties

Example - Determine the DTFT ¥ (e/®) of

y[n]=(n+Da"u[n], o<1
Let x[n]=a"p[n], o <1

We can therefore write
yln]=nx[n]+ x[n]
From Tables above, the DTFT of x[n] 1s

given by |

X (e/®) =
l—oe




DTFT Properties

» Using the differentiation property of the
DTFT given in Table above, we observe
that the DTFT of nx[n] 1s given by
dX(e’®) . d 1 ]_ oe

T de CI'ODLI—OLejCO (I—ae /@)

* Next using the linearity property of the

DTFT given in Table above we arrive at

. —jo
Y(e/?) = ae + 1 — = :

I-ae/®)? 1-ae/® B (1—oe /®)?



DTFT Properties

» Example - Determine the DTFT V' (e/®) of
the sequence v[n] defined by

dov[n]+dy[n—1]= pyo[n]+ p;o[n—1]
 The DTFT of o[n]is 1
» Using the time-shifting property of the
DTEFT given in Table above we observe that

the DTFT of §[n—1] is e /* and the DTFT
of v[n—1]1s e ’/®V(e’/®)




DTFT Properties

Using the linearity property of we then

obtain the frequency-domain representation
of

dov[n]+dy[n—1]= pyo[n]+ p;o[n—1]
as
doV (/) +die™/V (e’®) = py + pre’®
Solving the above equation we get
V(e/®) = Po T ple_J:m
dy+de’®




Energy Density Spectrum

* The total energy of a finite-energy sequence

g[n] 1s given by

2 2
E,= Ygln]
N=—00

* From Parseval’s relation given above we

observe that

o0 ) 1 T

E,= Xiglnl = |

2
G( ef(”)‘ do
S 21




Energy Density Spectrum

* The quantity
2
Sgg(®) = ‘G(ejm)‘

1s called the energy density spectrum

e Therefore, the area under this curve in the
range —T<®=<T7 divided by 27 1s the
energy of the sequence



Energy Density Spectrum

» Example - Compute the energy of the

sequence

e Here

hypln]=

SlIl(Dn
T —00<n<©
I o2
C= o L Hip(€?) do

-

1, 0<lo <o,

0, o, <®<T



Energy Density Spectrum

 Therefore

COC

®
[do=—"*< <o
@, m

%O:‘hLP[n]‘z

_ 1
11=—00 2T

* Hence, A;p[n]is a finite-energy sequence



DTFT Computation Using
MATLAB

* The function £reqz can be used to

compute the values of the DTFT of a
sequence, described as a rational function in
the form of

® — joM

X(ejO)) _ Po +]918_]. -|-....‘|‘pMe —
dy+die’” +....+dye

at a prescribed set of discrete frequency
points ® =,



DTFT Computation Using MATLAB

* For example, the statement
H = freqz (num,den, w)

returns the frequency response values as a
vector H of a DTFT defined 1n terms of the

vectors num and den containing the
coetticients {p;} and {d,}, respectively at a

prescribed set of frequencies between 0 and
2 7z given by the vector w

e There are several other forms of the function
freqz



DTFT Computation Using MATLAB

« Example — We 1llustrate the magnitude and phase of
the following DTFT

0.008—0.033¢7/” +0.05¢77*” —0.033¢/°” +0.008 ¢ /**

X(e’?) = . . . .
(™) 1423772 +2.7e7*? +1.6e°? +0.41e /%

Magnitude Spectrum Phase Spectrum
l l ' ‘ ‘




DTFT Computation Using
MATLAB

* Note: The phase spectrum displays a
discontinuity of 27 at = 0.72

* This discontinuity can be removed using the
function unwrap as indicated below

Unwrapped Phase Spectrum




Linear Convolution Using
DTFT

* An important property of the DTFT 1s given
by the convolution theorem

* It states that 1f y[n] = x[n]® A[n], then the
DTFT Y(e’®) of y[n] is given by
Y(e!) =X (/") H (")
* An implication of this result 1s that the

linear convolution y[n] of the sequences
x[n] and A[n] can be performed as follows:



Linear Convolution Using
DTFT

» 1) Compute the DTFTs X (e/®) and H (')

of the sequences x[#] and A[n], respectively
+ 2) Form the DTFT Y(e’®) =X (e/*)H (e/®)
e 3) Compute the IDTFT y[n]of Y (ej ?)

Jo
x{n]-———*])TFT‘-gggg—l) Y(ejm)

IDTFT — yl[#]

h[n] — DTFT _
H(e’?)




Discrete Fourier Transform

Definition - For a length-N sequence x[n],
defined for 0 <n < N —1 only N samples of its
DTEFT are required, which are obtained by
uniformly sampling X (e/®) on the w-axis
between 0<w<2m at o, =2nk/N 0<k<N-1

From the definition of the DTFT we thus have

: N-1 :
X k :X J — —]27'Ck/N
1=Ky = £k

0<k<N-I



Discrete Fourier Transform

* Note: X[k] 1s also a length-N sequence in
the frequency domain

* The sequence X[k] 1s called the Discrete
Fourier Transform (DFT) of the sequence
x[n]

—j2n/ N

» Using the notation Wy, =e the

DEFT 1s usually expressed as:

N-1 I
X[kl= Y x[n]Wy", 0<k<N-1
n=0



Discrete Fourier Transform

e The Inverse Discrete Fourier Transform

(IDFT) 1s given by
1 N-1 —
x[n]=— % X[k]Wy™, 0<n<N-1
N k=0

* To verity the above expression we multlply
both sides of the above equation by WN
and sum the result fromn=0to n=N —1



Discrete Fourier Transform

resulting in

N-1 ., Nl Nl o ,
=0 =0\ &V x=0
N-1N-1
1 X| k]W]\—[(k—é)n
N .20 k=0
N-1N-1
- ]1[ X[kt



Discrete Fourier Transform

* Making use of the identity

N—IW_ (k=0 _ [ N, for k—¢=rN,r an integer
Zo N 1 0, otherwise
n=

we observe that the RHS of the last
equation 1s equal to X[/]

 Hence N_1

S x[n]Wy! = X[/
n=0



Discrete Fourier Transform

« Example - Consider the length-N sequence

x[n] = 1, n=0
10, 1€n<N-1

 Its N-point DFT is given by
N-1 ' 0
X[k]= > x[n]Wy' =x[0]Wy =1
n=0

0<k<N-1



Discrete Fourier Transform

« Example - Consider the length-N sequence

L n=m
yln]= 0, 0<n<m-1,m+1<n<N-1

 Its N-point DFT is given by
il kn km km
Y[k]= ), y[n]Wy" = y[mWy" =Wy
n=0
0<k<N-1



Discrete Fourier Transform

« Example - Consider the length-N sequence
defined for 0<n< N -1

gln]=cos(2nrn/N), 0<r< N -1

» Using a trigonometric 1identity we can write

L( iomm/N
nl= (g2
gln] 2(

— ey

_I_e—]27crn/N)



Discrete Fourier Transform

* The N-point DFT of g[#] 1s thus given by

N-1 .
Glk]= 2. glnWy
n=0
N-1 N-1
:;( > s ngfwk)nj,
n=0 n=0



Discrete Fourier Transform

* Making use of the identity

N_lW_(k_g)n [ N, for k—/¢=rN, r an integer
Zo N 1 0, otherwise
n=

we get

(N/2, fork=r
Glk]=<N/2, fork=N-r
-0, otherwise

0<kr<N-1




Matrix Relations
* The DFT samples defined by
ijzgfqmwﬁﬂ 0<k<N-1I
can be eXpr:;sOed in matrix form as

X:DNX

=[x[0] X111 ... X[N-1]]"
x=[x[0] 1] ... xN-1]]"




Matrix Relations

and D 1s the N x NDFT matrix given by

1 1 .. 1
W Wi W]%N 1)
Dy =|1 W]\zf W;‘, .. W]%](N—l)

AR e G R (N-1)°



Matrix Relations

» Likewise, the IDFT relation given by
x[n] = NZ_IX[k]W]\_,k”, 0<n<N-1
k=0
can be expressed in matrix form as
x=DyX
whereDJ_\,1 1s the N x N IDFT matrix



e Note:

Matrix Relations

i WJ;(N—I) =2(N-1)

N

Dy = . D}
N N N




DFT Computation Using
MATLAB

* The functions to compute the DFT and the
IDFT are ££t and ifft

* These functions make use of FFT
algorithms which are computationally
highly efficient compared to the direct
computation



DFT Computation Using
MATLAB

* Example - The DFT and the DTFT of the
sequence

x[n]=cos(6nn/16), 0<n<15
are shown below

o indicates DFT samples

0.2 0.4 0.6 0.8 1
Normalized angular frequency



DTFT frommn DFT by
Interpolation

* The N-point DFT X[k] of a length-N
sequence x[#] 1s simply the frequency
samples of its DTFT X (e’®) evaluated at N
uniformly spaced frequency points

O=0, =2nk/N, 0<k<N-1

* (G1iven the N-point DFT X[4] of a length-N
sequence x[n], its DTFT X (¢’®) can be
uniquely determined from X[4] !



DTFT from DFT by

Interpolation
Thus
N-1
X(*)= X x[n]e” /™"
n=0
N-1[ 1 N-1 P
= 2| X X[y e /P
n=0 N k=0 |
N k=0 n=0 y
-

S



DTFT from DFT by
Interpolation
* To develop a compact expression for the
sum S, let = ¢ /(@72 V)
=YVt N _1=8+ Y -1
o Then S=3Y"r"
* From the above

rS=YN " =1+ 3TN0 4N ]



DTFT frommn DFT by
Interpolation

* Or, equivalently,
S—rS:(l—r)Szl—rN
e Hence

q_ 11—V _l-e
T l—p g Jlo-Qnk/N)]
. ((DN — 21k

sin
B 2 ). o~ Jl(@=2mk/ N)][(N-1)/2]
. ((DN —21k)

sin
2N )

— i(@N—=21k)




DTFT frommn DFT by
Interpolation

 Therefore
X (e’®)

1 N-1

sm(
— > X
Y kZO [« ]sin (

. o= Jl(@=27k! N)I[(N-1)/2]



Sampling the DTFT

* Consider a sequence x[n] with a DTFT X (ej )

» We sample X (e’ )at N equally spaced points
0, =2nk/N,0<k <N -1 developing the N
frequency samples {X (¢/“%)}

* These N frequency samples can be

considered as an N-point DFT Y[k] whose V-
point IDFT 1s a length-N sequence y|[#]



Sampling the DTFT

e Now X (&/®)= %O‘,x[é]e_jmg

{=—00

e Thus Y[k]=X(e/®)= X (e/?™ M)
{=—o0 {=—0o0
 An IDFT of Y[k] yields

1 N-1

— S Y[k
yln] N;Eo LalU4N,



Sampling the DTFT

lN—l 00

cie lnl= o X XAy Wy
k=0 {=—0o0

= S| S wkH
{=—00

* Making use of the identity

LS ke (n—r) |, for r=n+mN
N ZO Wy ~ { 0, otherwise
n=



Sampling the DTFT

we arrive at the desired relation

y[n]= > x[n+mN], 0<n<N-1
M=—00
e Thus y[n] 1s obtained from x[#] by adding
an infinite number of shifted replicas of
x[n], with each replica shifted by an integer
multiple of N sampling instants, and

observing the sum only for the interval
0<n<N-1



Sampling the DTFT

* To apply

yn]= DY x[n+mN], 0<n<N-1
M=—00
to finite-length sequences, we assume that
the samples outside the specified range are

ZCT0S

e Thus if x[n] 1s a length-M sequence with
M < N, theny[n]|=x[n] for 0<n< N -1



Sampling the DTFT

 If M> N, there 1s a time-domain aliasing of
samples of x[#] in generating y[n], and x[n]
cannot be recovered from y[#]

 Example - Let {x[n]}={0 1 2 3 4 5}
1

* By sampling its DTFT X (ej “Yat o, =2nk/4
0 <k <3 and then applying a 4-point IDFT to
these samples, we arrive at the sequence y[n]
given by



Sampling the DTFT

yln]l=x[n]+x[n+4]+x[n—-4],0<n<3
T b=t 6 2 3

‘ {x[n]} cannot be recovered from {y[n]}



Numerical Computation of the
DTFT Using the DFT

A practical approach to the numerical
computation of the DTFT of a finite-length
sequence

e [etX (ej ®) be the DTFT of a length-N
sequence x|[n]

« We wish to evaluate X (e’®) at a dense grid
of frequencies®, =2nk/M, 0<k <M —1,
where M >> N:



Numerical

Computation of the

DTFT Using the DFT

X(ej(ok):Nilx[ le” jogn _ Z x[n]e —j2mkn/M

n=0

* Define a new sequence

X,[n]=-

e Then

‘x[n], 0<n<N-1
0, N<ns<M-1

X(ej(Dk ) _ Mz_l x[n] e—j2nkn/M

n=0



Numerical Computation of the
DTFT Using the DFT

 Thus X (ej ®k)is essentially an M-point DFT
X ,[k] of the length-M sequence x,[n]

* The DFT X,[k] can be computed very
efficiently using the FFT algorithm 1f A 1s
an integer power of 2

* The function fregz employs this approach

to evaluate the frequency response at a
prescribed set of frequencies of a DTFT
expressed as a rational function in e /®



DFT Properties

e Like the DTFT, the DFT also satisfies a
number of properties that are useful 1n
signal processing applications

* Some of these properties are essentially
1dentical to those of the DTFT, while some
others are somewhat different

* A summary of the DFT properties are given
in Tables 1n the following slides



Table: General Properties of DFT

Type of Property Length-N Sequence N-point DFT
gln] G[k]
h(n] Hk]

Linearity agln] + Bh[n] aGlk] + BH[k]

Circular time-shifting

Circular
frequency-shifting

Duality

N-point circular
convolution

Modulation

N—

gl{n —no)n]

Wy " gln)
Gn]

1
’ glmlh{{n —m)N]

glnlh[n]

W' Glk]
Gk — ko) N ]
Ngl{—=k)N]
GlkH[k]
N-1

LY GImlH[(k — m)y)

m=0

Parseval’s relation

N-1
Y Ix[n))? =
n=0

1 N-1
N 2 XK
k=0




Table: DFT Properties:
Symmetry Relations

Length-N Sequence N-point DFT
x[n] X[k]
x*[n] X*[(=k)N]
x*[(=n)N] X*[k]
Re{x[n]} Xpes[k] = ${X[k)N] + X*[(=k) N ])
J Im{x[n]} Xpealk] = 3 {X[(k)N] — X*[(=k) N1}
xpcs[n] Re{X[k]}
Xpca [1] J Im{X[k]}

Note: xpcs[n] and Xpca[n] are the periodic conjugate-symmetric and
periodic conjugate-antisymmetric parts of x[n], respectively. Likewise,
Xpes[k]and X pca [k] are the periodic conjugate-symmetric and periodic
conjugate-antisymmetric parts of X [k], respectively.

x[n] 1s a complex sequence



Table: DFT Properties:
Symmetry Relations

Length-N Sequence N-point DFT
x[n] X[k] = Re{X[k]} + j Im{X[k]}
xpeln] Re{X [k]}
Xpoln] J Im{X[k]}

X[k] = X*[(—k)N]
Re X[k] = Re X[(—k)N]
Symmetry relations Im X[k] = —Im X[(—k)nN]
|X[k]l = |X[{(—=k)N ]I

arg X[k] = —arg X[(—k)N]

Note: xpe[n] and Xpo[n] are the periodic even and periodic odd parts
of x[n], respectively.

x[n] 1s a real sequence



Circular Shift of a Sequence

* This property 1s analogous to the time-
shifting property of the DTFT, but with a
subtle difference

* Consider length-N sequences defined for
0<n<N-I

* Sample values of such sequences are equal
to zero for values of n <0 andn= N



Circular Shift of a Sequence

* If x[n] 1s such a sequence, then for any
arbitrary integer n,, the shifted sequence

X1 [n]=x[n- no]
1s no longer defined for the range 0 <n < N -1

* We thus need to define another type of a
shift that will always keep the shifted
sequence 1n the range 0<n< N —1



Circular Shift of a Sequence

* The desired shift, called the circular shift,
1s defined using a modulo operation:

x [ n|l=x[{n—n,)r]

* For n, > 0 (right circular shift), the above
equation implies

x.[n]= x[n—n,], forn,<n<N-1
o XIN—-n,+n], torO<n<n,



Circular Shift of a Sequence

e [llustration of the concept of a circular shift

T)T11345 011[45" ]lzsjjn
x[n] x[(n =1 x[(n—4)¢]



Circular Shift of a Sequence

* As can be seen from the previous figure, a
right circular shift by », 1s equivalent to a
left circular shift by N —n, sample periods

A circular shift by an integer number 7,

greater than N 1s equivalent to a circular
shift by (n,)



Circular Convolution

* This operation is analogous to linear
convolution, but with a subtle difference

* Consider two length-N sequences, g[n] and
h|n], respectively

e Their linear convolution results 1n a length-
(2N —1) sequence y; [n] given by

1
ypln]= NZg[m]h[n—m], 0<n<2N-2
m=0



Circular Convolution

* In computing y; [n] we have assumed that
both length-N sequences have been zero-
padded to extend their lengths to 2N —1

* The longer form of y;[n] results from the
time-reversal of the sequence ~[n] and its
linear shift to the right

e The first nonzero value of y;[n] is
7 [0]= g[0]4[0], and the last nonzero value
is y;[2N —=2]=g[N —1]A[N —1]



Circular Convolution

* To develop a convolution-like operation
resulting 1n a length-N sequence y-[n], we
need to define a circular time-reversal, and
then apply a circular time-shift

» Resulting operation, called a circular
convolution, 1s defined by

yeln]= Néig[m]h[(n —myy], 0<n<N-1



Circular Convolution

Since the operation defined involves two
length-N sequences, 1t 1s often referred to as
an N-point circular convolution, denoted as

yln] = gln]® hln]
The circular convolution 1s commutative,
1.€.

gln]@hln] = hln]@g[n]



Circular Convolution

« Example - Determine the 4-point circular
convolution of the two length-4 sequences:

glaly=d 2 0 1, Wlnlj=2 2 1 1

T T
as sketched below
21 g[n] 2T 7 Alnl
1o o o]
B L,
O 1 2 3 O 1 2 3



Circular Convolution

* The result 1s a length-4 sequence y-[n]
given by

3
elnl=glnl@hn]= Selmihl(n=m)),
. 0<n<3

e From the above we observe

3
vel0]= 2 glmlAl-m),]

= gl0]A[0]+ gl1]A[3]+ g[2]A[2]+ g[3]gl1]
=(Ix2)+2x)+(O0x1)+(1x2)=6



Circular Convolution
. Likewise yc[l]= 3 glm]h{(1-m),]
m=0

= gl0]Al1]+ g[1]A[0]+ g[2]A[3]+ g[3]hA[2]
=(Ix2)+(2x2)+(O0xD)+({Ax1)=7

3
vel2l= 2 glm]hl(2—m)4]

m=0

= gl0]Al2]+ g[1]A[1]+ g[2]A[0]+ g[3]A]3]
=(Ix1)+(2x2)+(0x2)+(1x1)=06




Circular Convolution

and

yel3]= Zg m]h[(3—m),]

= g[O] 3]+ gll]Al2]+ g[2]h[1]+ g[3]A[0]
=(Ix)+2xDH)+(0x2)+(1x2)=35

yeln]

* The circular convolution can also be
computed using a DFT-based approach as
indicated 1n previous Table



Circular Convolution

» Example - Consider the two length-4

sequences repeated below for convenience:
27 g[n] 271 Ahln]

10

n

o o]
0O 1 2 3 0O 1 2 3

e The 4-point DFT G[k] of g[n] 1s given by
Glk]= gl[0]+ g[1]e /*™/*
— 1420 /K2 4 oK < k<3



Circular Convolution

* Theretore G[0]=1+2+1=4,
Gll]=1-j2+j=1-,
G[2]=1-2-1=-2,
G[3|=1+j2-j=1+

o Likewise,
H{k]= h[0]+ h[1]e~/#7/

— 242 K2 | IR o3RI 0 < f <3




Circular Convolution

 Hence, H[0]=2+2+1+1=6,
H[l|=2-j2-1+j=1-,
H[2]=2-2+1-1=0,
H|[3]|=2+j2-1-j=1+

* The two 4-point DFTs can also be
computed using the matrix relation given
carlier



HioT

 —
-
|

QQQD

H[1]
H[2]

| H([3]

© W
|

Circular Convolution

 g[0]]

gll]
g[2]
g[3]
h[0]
h[1]
h[2

|
| A3]

D, 1s the 4-point DFT matrix

—O N




Circular Convolution

* If Y-[k]denotes the 4-point DFT of y-[#n]
then from Table above we observe

Y [k]=Glk)H[k], 0<k<3

e Thus
YclO]| | GIOJH[O]| [ 24 °
Yell] | _| GIIH[] | _|—j2
YC[2] | G[21H[2]1| | ©
Yo[31] LGI31H[3]] L J2 _




Circular Convolution
* A 4-point IDFT of Y-[k] yields

yclO] Yc[0]
yelll | _ Ly#| Yol
vel2]| 47° Yc[z]
yel3l Yel3 ]

1 1 d 1 || 24

LT g —1 —Jl—J2

411 -1 1 =1 O
L —j =1 j] 2

Y o) BN Ne))




Circular Convolution

« Example - Now let us extended the two
length-4 sequences to length 7 by
appending each with three zero-valued
samples, 1.¢.

_Jgln], 0<n<3
ge[n]—{ , 4<n<6

_|h[n], 0<n<3
he[”]‘{ 0, 4<n<6




Circular Convolution

* We next determine the 7-point circular
convolution of g,[r]and A, [n]:

6
yin]= 2glmlh[{n—m);], 0<n<6

m=0

* From the above y[0]=g,[0]A,[0]+ g.[1]A,.[6]

+ 2,131, [4]+ g [4)h.[3]+ g [5]h.[2] + g.[6]h,[1]
= o[0]A[0]=1x2 =2




Circular Convolution

e Continuing t

VIl
2.

= g[0]
= g[0]

h
h

1
2

+g[1]A[0.

1+ g[1]A[l,

e process we arrive at

— (1x2)+(2x2) =6,
+ g[2]A[0]

=(Ix1)+(2x2)+(0x2)=35,
y[3]=glOJa3]+ glllnl2]+ g[2]A[1]+ g[3]A]0]
=(Ix1)+2x1)+(0x2)+(1x2)=35,

y[4]= gl 3]+ gl2]a 2]+ g[3]A[1]
=2x)+(O0xD)+(1x2)=4,



Circular Convolution
y[S]=g[2]h[3]+ g[3]h[2]=(0x1)+(1x1) =1,
yL6]=gl3]h[3]=(1x1)=1
e As can be seen from the above that y[n] 1s

precisely the sequence y;[#]obtained by a
linear convolution of g[n] and A[n]




|

ycl0] |
yell]
yel?]

[N —1]

Circular Convolution

* The N-point circular convolution can be
written 1n matrix form as

:
A1l AH[0]  A[N-—I]
H[2’ A1 H[0]

HN-1] KN-2] HN-3] -

0]  A[N—-1] K[N-2] ---

gl0]
g[1]
gl2]

0 _g[N —1]_

* Note: The elements of each diagonal of the
N x N matrix are equal

 Such a matrix 1s called a circulant matrix



Computation of the DFT of
Real Sequences

* In most practical applications, sequences of
interest are real

 In such cases, the symmetry properties of
the DFT can be exploited to make the DFT
computations more efficient



N-Point DFTs of Two Length-N
Real Sequences

Let g[n] and Ak[n] be two length-N real

sequences with G[k] and H[k] denoting their
respective N-point DFTs

These two N-point DFTs can be computed

efficiently using a single N-point DFT

x|n]

Define a complex length-N sequence

=g[n]+ jhln]

Hence, g[n] = _Re {x[n]} and A[n] = Im{x[n]}



N-Point DFTs of Two Length-N
Real Sequences

* Let X[k] denote the N-point DFT of x[#]

* Then, DFT properties we arrive at

Glk]= X[kl + X *[(~k) 5]}

HIk]= , {X[k]- X *[=k)y ]}

e Note that
X*[(k)n]=X*[(N-k)y]



N-Point DFTs of Two Length-N
Real Sequences

» Example - We compute the 4-point DFTs of
the two real sequences g[n] and A[n] given
below

{g[n]}={% 2 0 1j, {h[n]}={% 2 1 1

o Then {x[n]}={g[n]}+ j{h[n]} i1s given by

x[n]}=41+j72 2+j2 j 1+ j}
T



N-Point DFTs of Two Length-N

Real Sequences
o Its DFT X[k] is

X[01p 11 1 1 )1+j2| [4+j6
XMyl |1 =; -1 jl2+2] | 2
X210 |t -1 1 -1 j | | -2
X3 Lt g -l =gl 1+ | L J2 _

 From the above

X *k]=[4—-j6 2 -2 —j2]
 Hence

X*[4-k)4]=[4-j6 —j2 -2 2]



N-Point DFTs of Two Length-N
Real Sequences

e Therefore
Gl =4 1-5 =2 1+ }
HIk]}=16 1-j7 0 1+ j}

verifying the results derived earlier



2N-Point DFT of a Reall
Sequence Using an N-point DFT

* Let v[n] be a length-2N real sequence with
an 2N-point DFT V[k]

e Define two length-/N real sequences g[#]
and h[n] as follows:

gln]=v[2n], hln]l=v[2n+1], 0<n<N

* Let G[k] and H[k] denote their respective N-
point DFTs




2N-Point DFT of a Reall
Sequence Using an N-point DFT

* Define a length-N complex sequence

wn]}=1glnl} + jinln]}
with an N-point DFT X[k]
e Then as shown earlier

Glk]= {X[k]+ X *[(~k) 5]}

HIk]= ) {XTk]- X *[(~k)y 1}



2N-Point DFT of a Reall
Sequence Using an N-point DFT

2N-1 '
* Now Vk]= > v[n]Wy
n=0
N-1 N-1
= Y v2nIWsi + Y v2n+ 1R
n=0 n=0
N nk Nl nk -k
= D gnlWy" + > hn]Wy Wy
n=0 n=0

Zg W Lk Z W)Wk 0<k<2N -1



2N-Point DFT of a Reall
Sequence Using an N-point DFT

* 1.€.,
Vik]=G(k) v ]+ WanH[(k)n], 0<k<2N -1

* Example - Let us determine the 8-point
DFT V]k] of the length-8 real sequence

Malt=0 2 2 2 0 1 1 1
)

 We form two length-4 real sequences as
follows




2N-Point DFT of a Reall
Sequence Using an N-point DFT

{g[n]}={V[2n]}={% 2 0 I

thin]}=Pp2n+1]}={2 2 1 1}
T
e Now

Vk]=G(k) 41+ Wy H[(k)y], 0<k<T

* Substituting the values of the 4-point DFT's
Glk] and H[k] computed earlier we get



2N-Point DFT of a Real
Sequence Using an N-point DFT
V10]= G[0]+ H[0]=4+6=10
V1]=G[1]+ Wy H[1]
=(1-j)+e /41— j)=1-j2.4142
V[2]=G[2]+ WeH[2]=—2+¢ /7/?.0=-2
V[3]=G[3]+ Wy H[3]
=1+ j)+e 71+ j)=1-j0.4142
V[4]= G[0]+ Wy H[0]=4+e /7 .6 =-2




2N-Point DFT of a Reall
Sequence Using an N-point DFT

V[5]=G[1]+Wg H[1]
=(1-j)+e 71— j)=1+ j0.4142

V[6]=G[2]+WLH[2]=-2+e /372 .0==2

V[7]=G[3]+ W H[3]
=(1+ ) +e /714 j) =1+ j2.4142



Linear Convolution Using the

DFT

* Linear convolution 1s a key operation 1n

many signal
* Since a DFT

using FFT al

processing applications

can be efficiently implemented
gorithmes, it 1s of interest to

develop methods for the implementation of

linear convo.

ution using the DFT



Linear Convolution of Two
Finite-Length Sequences

* Let g[n] and A#[n] be two finite-length
sequences of length N and M, respectively

* Denote L=N+M -1
e Define two length-L sequences

_Jgln], 0sn<N-I
gelnl=+ 0, N<n<L-1

(h[n], 0<n<M-1
helm1 =170 M<n<L-1




Linear Convolution of Two
Finite-Length Sequences

e Then
yilnl=glnl®h[n]= ycln]= gln] D Aln]

* The corresponding implementation scheme
1s 1llustrated below

g[n] Zero-p.aﬁding goln] [(N+M-1)-
I wit :
Length-N | (M —1) zeros pomt DFT %) (N+M—-1)-| yrln]

h[n] |Zero-padding |/ ] (N +M 1) - point IDFT

— with :
Length-M |(N —1) zeros penrt L Length-(N + M —1)




Linear Convolution of a Finite-
Length Sequence with an
Infinite-Length Sequence

* We next consider the DFT-based
implementation of

Zh =h[n] @ x[n]

where h[n ] 1s a finite-length sequence of
length M and x[#] 1s an infinite length (or a

finite length sequence of length much
greater than M)



Overlap-Add Method

* We first segment x[n], assumed to be a
causal sequence here without any loss of
generality, into a set of contiguous finite-
length subsequences x,,[n]of length N each:

x|n|= ixm[n —mN |

m=0

x [n]= x[n+mN], 0<n<N-1
e 0, otherwise



Overlap-Add Method

e Thus we can write

yln]=h[n]@x[n] Zymn mnN |

m=0
where

Ymln]=hln]®x,,[n]
* Since h|n] 1s of length M and x,,[n] 1s of

length N, the linear convolution A[n]®x, 1]
1s of length N +M —1



Overlap-Add Method

* As aresult, the desired linear convolution
y|n]=h[n]G x|[n] has been broken up into a
sum of infinite number of short-length
linear convolutions of length N + M —1
each: y, [n]=x,[n]|® h[n]

e Each of these short convolutions can be
implemented using the DFT-based method
discussed earlier, where now the DFTs (and

the IDFT) are computed on the basis of
(N + M —1) points



Overlap-Add Method

* There 1s one more subtlety to take care of
before we can implement

yn]= 2 ym[n—mN]
m=0
using the DFT-based approach

 Now the first convolution in the above sum,
Yolnl=hln]Go xy[n], is of length N + M —1
and 1s defined for 0 <n< N+ M -2



Overlap-Add Method

* The second short convolution y[n]=
h[n]&®x[n], 1s also of length N+ M —1
but 1s defined for N<n<2N+M -2

. - There 1s an overlap of M —1 samples
between these two short linear convolutions

» Likewise, the third short convolution y,[n]=
h|n]®x,[n], is also of length N+ M —1
but 1s defined for 0<n<N+M -2



Overlap-Add Method

e Thus there i1s an overlap of M —1 samples
between h[n]@x;[n]and h[n]Gox,[n]

* In general, there will be an overlap of M —1
samples between the samples of the short
convolutions A[n]Gx,_¢[n] and A[n]®x,.[n]
for

* This process 1s 1llustrated in the figure on
the next slide forM=5and N=7



Overlap-Add Method
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Overlap-Add Method

yolnl
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Overlap-Add Method

* Therefore, y[n] obtained by a linear
convolution of x[n] and A[#] 1s given by

1= yoln],
|=yolnl+nln-"7],
|=yln-"7],
|=nln-"T]+y,|n—-14],
|=y2[n—14],

0<n<6
7T<n<l
11<n<1
14<n<l1
18<n<20

N W O



Overlap-Add Method

« The above procedure 1s called the overlap-
add method since the results of the short
linear convolutions overlap and the
overlapped portions are added to get the
correct final result

e The function ££t£ilt can be used to
implement the above method



Overlap-Add Method

 We have created a program which uses ££t£filt

for the filtering of a noise-corrupted signal y[n]
using a length-3 moving average filter. The

* The plots generated by running this program 1s
shown below

Amplitude
— l\) -h Q
Y
P 4
/
L/
"i




Overlap-Save Method

* In implementing the overlap-add method
using the DFT, we need to compute two
(N + M —1)-point DFTs and one (N + M —1)-
point IDFT since the overall linear
convolution was expressed as a sum of

short-length linear convolutions of length
(N+ M —1)each

* It 1s possible to implement the overall linear
convolution by performing instead circular
convolution of length shorter than (N + M —1)



Overlap-Save Method

e To this end, 1t 1s necessary to segment x| 7]
into overlapping blocks x,,[#], keep the
terms of the circular convolution of 4[n]
with x, [n] that corresponds to the terms
obtained by a linear convolution of ~[n] and

x,|n], and throw away the other parts of
the circular convolution



Overlap-Save Method

* To understand the correspondence between
the linear and circular convolutions,
consider a length-4 sequence x[#n] and a
length-3 sequence A[n]

* Let y;[n] denote the result of a linear
convolution of x[n] with A[n]

* The six samples of y;[n] are given by



Overlap-Save Method

y10]=A[0.
vl =A[0.
0
0

S

1]+ A0

v [2]1= A[01x[2]+ A[1]x{1]+ A[2]x[0]
yr[31= A0 3]+ Al 2]+ A2 ]x[1
yrla4]=hll]x[ 3]+ h{2]x] 2]
yrlS]=h{2]x3]

R




Overlap-Save Method

If we append /[n] with a single zero-valued
sample and convert 1t into a length-4

sequence /,[n], the 4-point circular
convolution y-[n]of A [n]and x[n] 1s given

by

ycl0]=Al0]x[0]+ A[1]x[3]+ A[2]x] 2]

yell=Al0]x[1]+ A[1]x[0
yel2]=h[0]x 2]
yel3]=h0]x[3]

+ h[

+h

I
1

X

i

x_

+ h|

+ h

-

2]

X

X

Bl
0
2]+ A2 ]x[1]




Overlap-Save Method

* If we compare the expressions for the
samples of y; [n] with the samples of y-[n],
we observe that the first 2 terms of y~[n] do
not correspond to the first 2 terms of y;[n],
whereas the last 2 terms of y-[n]are
precisely the same as the 3rd and 4th terms
of y;[n],1e.,

yr10]# yc[0], yrlll# yelll
yil2l=ycl2], yil3l=ycl3]




Overlap-Save Method

* General case: N-point circular convolution
of a length-M sequence A[n] with a length-N
sequence x[n] with N> M

* First M —1 samples of the circular
convolution are incorrect and are rejected

* Remaining N — M +1 samples correspond
to the correct samples of the linear
convolution of 4[n] with x[n]



Overlap-Save Method

* Now, consider an infinitely long or very
long sequence x[#]

* Break 1t up as a collection of smaller length
(length-4) overlapping sequences x,,[n] as
Xplnl=xln+2m], 0<n<3, 0<m<oo

e Next, form
Wyl = hn) @, ]



Overlap-Save Method

* Or, equivalently,
W, [0]= Al0]x,,[0]+ Al1]x,, [ 3]+ Al2]x,,[2]

Wi [11= A0 xy, [1]+ A1, [0]+ A[ 2], [3]
Wil 21= h[0]x,, [2]+ A1 ], [1]+ A 2], [0
Wil 31= Al0]x,,, [ 3]+ All]x,, [ 2]+ A 2], [1

* Computing the above form=0,1,2,3,...,
and substituting the values of x,,[n] we
arrive at



Overlap-Save Method

0]

:>< :>< '>< '><

RIER/

0]+ A[1]x[3]+ A[2]x[2]
1]+ A[1]x[0]+ A[2]x[3]
2]+ A

i

1]
+ A[1]x[ 5]+
— : + h[l]x
41+ h[l]x

X

S|+ h[l]x]

X

1]+ A[2]x[0

B :t\)'

1+ Al
1+ A
1+ Al

2

.
2]

><:>< =

3]=

< Reject

< Reject

= y:Z] < Save

2]+ h[2]x[1] =
A[2]x[4]
S,
%

:3] < Save

< Reject

< Reject

4] «Save

:5] < Save



Overlap-Save Method

4]+ A1 5]+ A[2]
51+ A[11x[4]+ A
01x[6]+ A[11x[5]+ A[

71+ A[11x[6]+ A[

< Reject

< Reject

- y:6: < Save

6
7.
4
S,

SRR
o

S S S S

= y|7] < Save



Overlap-Save Method

* It should be noted that to determine y[0] and
y[1], we need to form x_;

x_q[2.

and compute w_i[n] =

x_1[0]=0, x_ [l
1=x{0],  x_4[3]=x[1]

hn]@x_4[n] tor0<n <3

nl.

_O,

reject w_i[0]and w_¢[1], and save w_{[2]= y[O0]
and w_[3]= y[1]



Overlap-Save Method

* General Case: Let 2[n] be a length-N
sequence

* Let x,,[n] denote the m-th section of an

infinitely long sequence x[#] of length N
and defined by

Xplnl=x[n+m(N-m+1)], 0<n<N-1

with M < N



Overlap-Save Method

* Let w,[n]=h~ln]®x,,[#]

* Then, we reject the first M —1 samples of w,, [ n]
and *““abut” the remaining N — M +1 samples of
w,,|n]to form y;[n], the linear convolution of
h|n] and x[n]

o If y,,[n] denotes the saved portion of w,,[#],
1.€.

0, 0<n<M-2
Ymlnl=

woln]l, M—-1<n<N-2



Overlap-Save Method

 Then
ypln+m(N-M+1)]=y,[n], M-1sn<N-I

» The approach 1s called overlap-save
method since the input is segmented 1nto
overlapping sections and parts of the results
of the circular convolutions are saved and
abutted to determine the linear convolution
result



Overlap-Save Method

e Process is illustrated next

T ol ™
i e

0




Overlap-Save Method

: wy 1]

T Hele W

o [ ¢

“—M-:’ : wyln]
reject

T[T

M—1=4 : : w, [n]
) 0 )
[T 1T
; ;
M-1=4
reject

v, [n]

1113

" 10 T 17 1% 8+
4 S I B P R S WP




z-Transform

 The DTFT provides a frequency-domain
representation of discrete-time signals and
LTI discrete-time systems

* Because of the convergence condition, 1n
many cases, the DTFT of a sequence may
not exist

» As aresult, 1t 1s not possible to make use of
such frequency-domain characterization in
these cases



z-Transform

* A generalization of the DTFT defined by
X(e)= Talnle /"
N=—00
leads to the z-transform

» z-transform may exist for many sequences
for which the DTFT does not exist

* Moreover, use of z-transform techniques
permits simple algebraic manipulations



z-Transform

* Consequently, z-transform has become an
important tool in the analysis and design of
digital filters

e For a given sequence g[n], its z-transform
(G(z) 1s defined as

G(z)= Y gln]=""

N=—00
where z = Re(z) + jIm(z) 1s a complex
variable



z-Transform

e Ifwelet z=re’ ® then the z-transform
reduces to

G(re/®)= Y gln]r™" e /o"

1=—00

* The above can be interpreted as the DTFT
of the modified sequence {g[n]r "

 Forr=1 (1.e., |z| = 1), z-transform reduces
to its DTFT, provided the latter exists



z-Transform

e The contour |z| =1 1s a circle in the z-plane
of unity radius and 1s called the unit circle

o Like the DTFT, there are conditions on the
convergence of the infinite series

> gln]z™"

N=—00
* For a given sequence, the set R of values of

z for which 1ts z-transform converges 1s
called the region of convergence (ROC)



z-Transform

 From our earlier discussion on the uniform
convergence of the DTFT, 1t follows that the
series
G(re’®)y= 3 g[nlr™" e /0"

n=—ao0

converges if {g[n]r "} is absolutely

summable, 1.e., 1f
00

[n]r™"

Nn=—a0



z-Transform

 In general, the ROC R of a z-transform of a
sequence g[n] 1s an annular region of the z-
plane:

Ro- < \z\ < Rg+
where 0 < R,- < Rg+ <00

* Note: The z-transform 1s a form of a Laurent
series and 1s an analytic function at every
point in the ROC



z-Transform

Example - Determine the z-transform X{(z)

of the causal sequence x[n]=a"py[n] and its
ROC

Now X(z)= Ya'yn]z"=>a"z™"
n=0

Nn=—0a0

The above power series converges to
1

l—-oaz

X(z)= , for ‘ocz_l‘<1

1

ROC 1s the annular region |z| > |a



z-Transform

« Example - The z-transform p(z) of the unit
step sequence u[z] can be obtained from

X(z)= 1 T for‘ocz_l‘<1
l-az
by setting o = 1:
u(z)= 1 T for z 71 <1
-z

» ROC is the annular region 1 < |z < o



z-Transform

* Note: The unit step sequence u[z] 1s not
absolutely summable, and hence 1ts DTFT
does not converge uniformly

» Example - Consider the anti-causal
sequence

yn]=—-o"p[-n—1]




z-Transform

e [ts z-transform 1s given by

—1 o0
Y(z)= Y-a"z"==>a """
N=—00 m=1
—1
R T o z
=—a 'z Yo """ =—

m=0 l—-o z
_ | —» for ‘Oc_lz‘<1
l—-az

» ROC is the annular region |z| < o



z-Transform

* Note: The z-transforms of the two
sequences o"u[n] and —o"u[-n—1] are
identical even though the two parent
sequences are different

* Only way a unique sequence can be
associated with a z-transform 1s by
specifying its ROC



z-Transform

« The DTFT G(e’®) of a sequence g[n]
converges uniformly if and only 1f the ROC
of the z-transform G(z) of g[n] includes the
unit circle

* The existence of the DTFT does not always
imply the existence of the z-transform



z-Transform

« Example - The finite energy sequence

SIN M .7
- C
hLP[n]— wn —oo < n<aoo

has a DTFT given by
1, 0<w<m,

Hp(e!®) =
tp(e™) iO, ®, <O

which converges in the mean-square sense



z-Transform

* However, h; p[n] does not have a z-transform

as 1t 1s not absolutely summable for any value
of r

* Some commonly used z-transform pairs are
listed on the next shide



Table: Commonly Used z-
Transform Pairs

Sequence z-Transform ROC
3[n] 1 All values of 7
1
uln] — 2] > 1
1l -2
1
a un] — 1z| > |«
l —az

1 — (rcoswy)z™!
1 — 2rcoswy)z=! +r2z—2
(r sin a)o)z_l
1 — 2rcoswy)z~ ! +r2z72

|z| > r

(r"* cos won)un]

(r" sin wen) u[n] 1z| > r




Rational z-Transforms

 In the case of LTI discrete-time systems we
are concerned with 1n this course, all
pertinent z-transforms are rational functions
of z7!

* That 1s, they are ratios of two polynomials
. ]
nz :

|
G(z) = P(z) _po+piz ++pyiz

D(z) dj+ dlz_l + ot dN_lz_(N_l) + dNZ_N



Rational z-Transforms

* The degree of the numerator polynomial
P(z) 1s M and the degree of the denominator
polynomial D(z) 1s N

e An alternate representation of a rational z-
transform 1s as a ratio of two polynomials 1n

Z.
M M-1
G(z) = L(N-M) Po? + D12 Tt P12 T Py

doz —I—dlzN Ly +dy_1z+dy




Rational z-Transforms

* A rational z-transform can be alternately
written 1n factored form as

pol 1)=&z
do[ T, (1= 2,z

_ _(N-M) Po [1L,(z-&)
dOHévzl(Z —Ay)

G(z)=




Rational z-Transforms

* Ataroot z=¢, of the numerator polynomial
G(E)=0, and as a result, these values of z
are known as the zeros of G(z)

* Atarootz =4, of the denominator
polynomial G(A,) — o0, and as a result,
these values of z are known as the poles of

G(z)



Rational z-Transforms

Consider y
_ _(N-M) Po [[,Z,(z=&)

dg Hévzl (z—4)

Note G(z) has M finite zeros and N finite
poles

If N> M there are additional N — M zeros at
z = (0 (the origin 1n the z-plane)

If N < M there are additional M — N poles at
z=0

G(z)




Rational z-Transforms

* Example - The z-transform

w(z)= : = for‘z‘>1

-z

has a zero atz=0 and a pole at z = 1

Im =

Region of
convergenocs
\{3 Re

Zeroatz=0




Rational z-Transforms

* A physical interpretation of the concepts of
poles and zeros can be given by plotting the
log-magnitude 20log;(|G(z)| as shown on
next slide for

1-2.4z"1 428872

G(2)= -1 2
1-0.8z  +0.64z




Rational z-Transforms




Rational z-Transforms

* Observe that the magnitude plot exhibits

very large peaks around the points
z=0.4=% j0.6928 which are the poles of

G(2)

* [t also exhibits very narrow and deep wells
around the location of the zeros at
z=12%;1.2



ROC of a Rational
z-Transform

 ROC of a z-transform 1s an important
concept

* Without the knowledge of the ROC, there 1s
no unique relationship between a sequence
and 1its z-transform

* Hence, the z-transform must always be
specified with 1ts ROC



ROC of a Rational
Zz-Transform

 Moreover, 1f the ROC of a z-transform
includes the unit circle, the DTFT of the
sequence 1s obtained by simply evaluating
the z-transform on the unit circle

* There 1s a relationship between the ROC of
the z-transform of the impulse response of a

causal LTI discrete-time system and its
BIBO stability



ROC of a Rational
Zz-Transform

The ROC of a rational z-transform 1s
bounded by the locations of its poles

To understand the relationship between the
poles and the ROC, 1t 1s mstructive to
examine the pole-zero plot of a z-transform

Consider again the pole-zero plot of the z-
transform p(z)



ROC of a Rational
Zz-Transform

Im z

Region of

CONVergenos
\{} \ Re z
\ Poleatz=1

e In this plot, the ROC, shown as the shaded
area, 1s the region of the z-plane just outside
the circle centered at the origin and going
through the pole atz =1

Zemoatz=0




ROC of a Rational
Zz-Transform

« Example - The z-transform H(z) of the
sequence A[n]=(-0.6)"u[n] is given by

H(z)= 1+016 s \ l
0Z
2> 0.6 <§K

Zeroat =0

* Here the ROC 1s just outside the circle
going through the point z =—-0.6



ROC of a Rational
Zz-Transform

* A sequence can be one of the following
types: finite-length, right-sided, left-sided
and two-sided

* In general, the ROC depends on the type of
the sequence of interest



ROC of a Rational
Zz-Transform

« Example - Consider a finite-length sequence
g[n] defined for - M <n < N, where M and
N are non-negative integers and \ g[n]\ < o0

e [ts z-transform is given by
N+M g[n —M]ZN+M_n

N
G(z)= Y g[n]z" =" N
n=—M Z



ROC of a Rational
Zz-Transform

* Note: G(z) has M poles at z =00 and N poles
at z = 0 (explain why)

* As can be seen from the expression for
(G (z), the z-transform of a finite-length
bounded sequence converges everywhere 1n

the z-plane except possibly at z =0 and/or at
Z =00



ROC of a Rational
Zz-Transform

« Example - A right-sided sequence with
nonzero sample values for n >0 1s
sometimes called a causal sequence

» Consider a causal sequence u;[n]

e [ts z-transform 1s given by

Uy(z) = 2 u[n]z™"
n=0



ROC of a Rational
Zz-Transform

* It can be shown that U;(z) converges
exterior to a circle |z| = Ry, including the
point z = oo

* On the other hand, a right-sided sequenceu,|[n]
with nonzero sample values only for n > -M
with M nonnegative has a z-transtorm U, (z)
with M poles at z =0

* The ROC of U,(z) 1s exterior to a circle
z|=R,, excluding the point z = ©




ROC of a Rational
Zz-Transform

« Example - A left-sided sequence with
nonzero sample values for n <0 1s
sometimes called a anticausal sequence

» Consider an anticausal sequence vi[n]

e [ts z-transform 1s given by

0
N = 2wlnlz™

n=—a0



ROC of a Rational
z-Transform

* [t can be shown that V;(z) converges
interior to a circle |z|= R3, including the
point z =0

* On the other hand, a left-sided sequence
with nonzero sample values only for n < N
with N nonnegative has a z-transform V,(z)
with Npolesatz=10

* The ROC of V,(z) 1s interior to a circle
z|= Ry, excluding the point z =0




ROC of a Rational
Zz-Transform

« Example - The z-transform of a two-sided
sequence w[n] can be expressed as

W(z)= iw[n]z‘” = iw[n]z‘” -+ iw[n]z‘”
n=0

N=—00 N=—00

» The first term on the RHS, > ™" wn]z™",
can be interpreted as the z-transform of a
right-sided sequence and it thus converges
exterior to the circle |z| = Ry



ROC of a Rational
Zz-Transform

» The second term on the RHS Zn__oo wln)z
can be interpreted as the z-transform of a left-
sided sequence and 1t thus converges interior
to the circle |z = R

—n
9

* If Ry < Rg, there 1s an overlapping ROC
given by Rs <|z| < R

» If Rs> Rg, there 1s no overlap and the
z-transform does not exist



ROC of a Rational
Zz-Transform

« Example - Consider the two-sided sequence
uln]=o"

where a can be either real or complex
e [ts z-transform 1s given by

00 00 —1
U(z)= Y a"z7"=>a"z7"+ > az™"
Hn=—00 n=0 N=—00
e The first term on the RHS converges for
z|> o, whereas the second term converges

for ‘Z‘ < oc\




ROC of a Rational
Zz-Transform

» There 1s no overlap between these two
regions

* Hence, the z-transform of u[n]=o” does
not exist



ROC of a Rational
Zz-Transform

e The ROC of a rational z-transform cannot
contain any poles and 1s bounded by the
poles

* To show that the z-transform 1s bounded by
the poles, assume that the z-transform X(z)
has simple poles atz=o and z=f3

* Assume that the corresponding sequence
x[n] 1s a right-sided sequence



ROC of a Rational
Zz-Transform

* Then x[n] has the form

x[n] = (rl(x" + 1P )p[n -N,1, a<B
where NV, 1s a positive or negative integer

* Now, the z-transform of the right-sided

sequence y" pu[n— N, ] exists 1f

2

n=N,

n-—n

Y Z

< 0

for some z



ROC of a Rational
Zz-Transform

 The condition

o0

2

n=N,
holds for |z| > |y| but not for|z| <|y|

n-—n

Y Z

< 0

e Therefore, the z-transtform of
xn]={ra” + " Juln—N,1. oo <[p
has an ROC defined by B <|z/ < o0



ROC of a Rational
Zz-Transform

* Likewise, the z-transform of a left-sided
sequence

dnl=(na +p” Jul-n—N,). oo <p
has an ROC defined by 0 <|z| <|a,

* Finally, for a two-sided sequence, some of
the poles contribute to terms 1n the parent
sequence for n < 0 and the other poles
contribute to terms n > 0



ROC of a Rational
Zz-Transform

* The ROC 1s thus bounded on the outside by
the pole with the smallest magnitude that
contributes for » < 0 and on the 1nside by
the pole with the largest magnitude that
contributes for n =0

* There are three possible ROCs of a rational
z-transform with poles atz=a and z = f3

(o <B)



ROC of a Rational
z-Transform

1111111111111111

Region of
convergence




ROC of a Rational
Zz-Transform

* In general, if the rational z-transform has N

poles with R distinct magnitudes, then 1t has
R+1ROCs

» Thus, there are R +1distinct sequences with
the same z-transform

 Hence, a rational z-transform with a
specified ROC has a unique sequence as its
inverse z-transform



ROC of a Rational
Zz-Transform

e The ROC of a rational z-transform can be
easily determined using MATLAB

[z,p, k] = tf2zp (num,den)

determines the zeros, poles, and the gain
constant of a rational z-transform with the

numerator coefficients specified by the
vector num and the denominator coefficients

specified by the vector den



ROC of a Rational
Zz-Transform

e [num,den] = zp2tf(z,p, k)
implements the reverse process

 The factored form of the z-transform can be
obtained using sos = zp2sos(z,p, k)

* The above statement computes the

coeftficients of each second-order factor
given as an [ x 6 matrix sos



ROC of a Rational
Zz-Transform

bor b1 b1 @ an
b b b a a
sos=|P02 P12 P ap ap

bor, b1 brr ar ar

where

bor + b,z 4+ by 2
G(Z) H()k blk 2k

k=190k T N2 1+azk2 2




ROC of a Rational
Zz-Transform

* The pole-zero plot 1s determined using the
function zplane

 The z-transform can be either described in
terms of 1ts zeros and poles:

zplane (zeros,poles)

e or, it can be described 1n terms of 1ts

numerator and denominator coefficients:
zplane (num, den)



ROC of a Rational
Zz-Transform

« Example - The pole-zero plot of

22441623 +44z%2 +562z+32
3z4 4323 -1522 +182z-12

obtained using MATLAB is shown below

G(z)=

| x —pole
oo x o 0 —ZE€10o




Inverse z-Transform

* General Expression: Recall that, for z = re’l ®

the z-transform G(z) given by
G(2) =L oo glnlz " =X o, gln]r e "
1s merely the DTFT of the modified sequence

glnlr™
* Accordingly, the inverse DTFT 1s thus given
by

g[n]r™" = 2111 [l G(re’®)e’®"do



Inverse z-Transform

By making a change of variable z = re’®,
the previous equation can be converted into
a contour integral given by

olnl= " [G(z)"dz
21 ¢
where C'1is a counterclockwise contour of

integration defined by |z| =7



Inverse z-Transform

* But the integral remains unchanged when

1s replaced with any contour C encircling
the point z = 0 1n the ROC of G(z)

* The contour integral can be evaluated using

the Cauchy’s residue theorem resulting in
. S

_ | residuesof G(z)z
sln] Z_at the poles mside C

* The above equation needs to be evaluated at
all values of n and 1s not pursued here



Inverse Transform by
Partial-Fraction Expansion

A rational z-transform G(z) with a causal
inverse transform g[n] has an ROC that 1s
exterior to a circle

e Here 1t 1s more convenient to express G(z)
in a partial-fraction expansion form and
then determine g[n] by summing the imnverse
transform of the individual simpler terms 1n
the expansion



Inverse Transform by
Partial-Fraction Expansion

A rational G(z) can be expressed as

M _
G(Z) — —P(Z) — Zi:o Piz
2 ZNOdiZ_i
=

 If M > N then G(z) can be re-expressed as

_ 0, R(2)
G(2)= Z mz + 509

where the degree of B(z)1s less than N




Inverse Transform by
Partial-Fraction Expansion

 The rational function F(z)/ D(z) 1s called a
proper fraction

 Example - Consider
2408z +0.527°+03z

1+0.82 +0.2z°
* By long division we arrive at

—1
G(z)=—3.5+1.52_1+ 5'5+12'IZ 5
1408z +02z

G(z)=




Inverse Transform by
Partial-Fraction Expansion

* Simple Poles: In most practical cases, the
rational z-transform of interest G(z) 1s a
proper fraction with simple poles

* Letthe polesof G(z) be atz=A, , 1<k N

A partial-fraction expansion of (G(z) 1s then
of the form

G(2)= %{1_"4 ]

—1
/=] 7L€Z




Inverse Transform by
Partial-Fraction Expansion

* The constants p, in the partial-fraction
expansion are called the residues and are
given by

py=(1- MZ_I)G(Z)‘F;%
* Each term of the sum 1n partial-fraction

expansion has an ROC given by z >\,
and, thus has an inverse transform of the

form p,(Ay)" pln]



Inverse Transform by
Partial-Fraction Expansion

* Therefore, the inverse transform g[n] of
G(z) 1s given by

N
gln]= Elpz (M) uln]

* Note: The above approach with a slight
modification can also be used to determine
the inverse of a rational z-transform of a
noncausal sequence



Inverse Transform by

Partial-Fraction Expansion

* Example - Let the z-transform H(z) of a
causal sequence A[n] be given by
z(z+2) 3 14+227
(z=02)(z+0.6) (1-02z"H(1+0.6z7))
A partial-fraction expansion of H(z) 1s then
of the form

P1 P2
H(z)= +
(2) 1-02z"" 1+0.6z"

H(z)=




Inverse Transform by
Partial-Fraction Expansion

e Now
—1
o1 =(1-02z"YH(z)_,= 25 =275
=V 140.62° 0.
and
1
Py =(1+062 YH(z)_ =25 =175
=06 027




Inverse Transform by
Partial-Fraction Expansion

e Hence
2.75 1.75

=022z 140627

* The inverse transform of the above 1s
therefore given by

h[n]=2.75(0.2)" u[n]-1.75(-0.6)" u[n]

H(z)=



Inverse Transform by

Partial-Fraction Expansion

* Multiple Poles: If G(z) has multiple poles,
the partial-fraction expansion 1s of slightly
different form

* Let the pole at z= v be of multiplicity L and

the remaining N — L poles be simple and at
Z:kg, IS/ISKN-L



Inverse Transform by
Partial-Fraction Expansion

* Then the partial-fraction expansion of G(z)
1s of the form

6@)="5 nz'+x Pas
Z)= NyZ — —
= =1 1-XA,z L Sa-vzly

where the constants Y; are computed using

1 d" 1L
= : (1—vz G(z :
(L-D)(=v): " d(zHE [( yeEL,
: 1<i<L
* The residues p, are calculated as before

Yi



Partial-Fraction Expansion
Using MATLAB

e [r,p,k]=residuez (num, den)
develops the partial-fraction expansion of
a rational z-transform with numerator and

denominator coefficients given by vectors
num and den

e Vector r contains the residues

* Vector p contains the poles

* Vector k contains the constantsz,



Partial-Fraction Expansion
Using MATLAB

e [num,den]=residuez (r,p, k)
converts a z-transform expressed 1n a
partial-fraction expansion form to its
rational form



Inverse z-Transform via Long
Division
e The z-transform G(z) of a causal sequence

{g[n]} can be expanded in a power series in z7)

* In the series expansion, the coefficient
multiplying the term z™" is then the n-th
sample g[n]

* For a rational z-transform expressed as a

ratio of polynomaials in z7L the pOWer series
expansion can be obtained by long division



Inverse z-Transform via Long
Division
« Example - Consider

1+2z71
1+04z71-0.122z72

* Long division of the numerator by the
denominator yields

H(z)=1+1.62"1-0522"2 40427 -0.2224z"* +---

 As aresult
{h[n]}:{% 1.6 —052 04 -02224 -}, n>0

H(z)=



Inverse z-Transform Using
MATLAB

* The function impz can be used to find the
inverse of a rational z-transform G(z)

e The function computes the coefficients of
the power series expansion of G(z)

e The number of coefficients can either be
user specified or determined automatically



Table: z-Transform Properties

Property Sequence z -Transform ROC

gln] G(z) R

h(n] H(z) R
Conjugation g*[n] G*(z%) Rg
Time-reversal gl—n] G(1/2) 1/Rg
Linearity agln] + Bh(n] aG(z) + BH(2) Includes Ry NRy,
Time-shifting gln —ny) 27" G(2) Rg, except possibly

the point z = 0 or 00
Multiplication by
an exponential ag(n] G(z/a) lx|R g
sequence
. . . dG .
Differentiation ng(n] . (2) Ry, except possibly
of G(2) dz the point z = 0 or o0
Convolution gnl® h[n] G(Q)H(2) Includes Ry N'Ry,
Modulation g[n)hln] 77 fc GWH@/vv™ dv  Includes Rg R,
o0
Parseval’s relation > glnlh*[n] = ler_j $c G H*(1/v*)v~ldv
n=—00

Note: If R denotes the region R,- < [z| < Ry+ and Ry, denotes the region Ry~ < [z| <
Ry+, then 1/Rg denotes the region I/Rg+ < |z] < 1/Ry- and RgR}, denotes the region
Rg_ Rh_ < |Z| < Rg+Rh+.



z-Transform Properties

« Example - Consider the two-sided sequence
V[n]=a"u[n]-B"p[-n-1]
« Let x[n]=0a"u[n] and y[n]=-B"u[-n—-1]
with X(z) and Y(z) denoting, respectively,
their z-transforms

e Now X(z) =

1

l—az
1

1—[32_1’

z>

—1°?

and Y(z)=

z2<p




z-Transform Properties

Using the linearity property we arrive at

1 1
V(z)=X(z)+Y(z)= +
(2)=X(2)+Y(2) gzl 1 pgo!
The ROC of V(z) 1s given by the overlap
regions of |z|>|a| and |z <[]
If |of <|B|, then there is an overlap and the
ROC is an annular region ot <|z < |

If |o > B/, then there is no overlap and V(z)
does not exist




z-Transform Properties

« Example - Determine the z-transform and
its ROC of the causal sequence

x[n]=r"(cosw, n)u[#]
* We can express x[n] = v[n] + v*[n] where
vin] =} e/ in] = | ol

2
* The z-transform of v[n] 1s given by
1 1
V Z :1 :1 . , ZI>ol=r
(2) 21—zl 2 1—pe/% 771 71>l



z-Transform Properties

* Using the conjugation property we obtain
the z-transform of v*[n] as
1 i 1

1. 1
2 1—a*z7l 2 1—pe /@ 771

zZ>
* Finally, using the linearity property we get
X(z2)=V(z)+V *(z*)

| 1 1
=1 . + .
2{1—re/®zl 1—pe /% ]



z-Transform Properties

° Of,

X(z2) = 1—-(rcoswm, )z 1

, |z|>r

22

1—(2rcosm, )zt +r2z~

* Example - Determine the z-transform Y(z)
and the ROC of the sequence

yn]=m+1)a"u[n]

 We can write y[n]=nx[n]+ x[n] where

x[n]= o pu[n]



z-Transform Properties

* Now, the z-transform X(z) of x[n]= a"u[n]
1s given by

1

az

X(Z)Il_

z>

» Using the differentiation property, we arrive
at the z-transform of nx|n] as

ZdX(Z)_ oz!
dz (1-oz)

. 2>



z-Transform Properties

» Using the linearity property we finally
obtain
—1

—1)2

Y(z)= 1 T &z
l—oz

(lI-oaz
B 1
(1-oazhH)?’

z >0



