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Simple Digital Filters

 Later in the course we shall review various
methods of designing frequency-selective
filters satisfying prescribed specifications

 We now describe several low-order FIR and
IIR digital filters with reasonable selective
frequency responses that often are
satisfactory in a number of applications



Simple FIR Digital Filters

* FIR digital filters considered here have
integer-valued impulse response coefficients

* These filters are employed 1n a number of
practical applications, primarily because of
their ssmplicity, which makes them amenable
to inexpensive hardware implementations



Simple FIR Digital Filters

Lowpass FIR Digital Filters

* The simplest lowpass FIR digital filter 1s the 2-
point moving-average filter given by

3 1
Ho(z)=11+z1= Zr1
0(2) =, ( )=
e The above transter function has a zero atz = -1

and apoleatz=0

* Note that here the pole vector has a unity
magnitude for all values of ®



Simple FIR Digital Filters

* On the other hand, as ® increases from 0 to
m, the magnitude of the zero vector
decreases from a value of 2, the diameter of
the unit circle, to 0

» Hence, the magnitude response |Hy(e’®)| is
a monotonically decreasing function of ®
fromow=0tom=mn



Simple FIR Digital Filters

* The maximum value of the magnitude
function 1s 1 at ® = 0, and the minimum
value 1s 0 at ® = m, 1.e.,

Ho(e’") =1, |Ho(e/™)=0
* The frequency response of the above filter
1s given by

Hy(e’®)=e 7" cos(w/2)



Simple FIR Digital Filters

e The magnitude response |H, (ej )= cos(w/2)
1s a monotonically decreasing function of ®

First-order FIR lowpass filter




Simple FIR Digital Filters

 The frequency o = @, at which

‘H 0(e7%)

I 0
— 2 H (o)
NG ‘ o(e )‘
1s of practical interest since here the gain in dB 1s

G(o,) = 20log,q|H (e’

=20log;o H(e’") ~20log 2 = -3 dB

since the DC gain 1s
201og,,|H (e’) =0



Simple FIR Digital Filters

* Thus, the gain G(®) at ® =, 1s
approximately 3 dB less than the gain at ©=0

* Asaresult, ®,. 1s called the 3-dB cutoff
frequency

* To determine the value of ®, we set
| Ho(e*) = cos™ (e, /2) =

which yields @, =mw/2



Simple FIR Digital Filters

The 3-dB cutoff frequency ®,. can be
considered as the passband edge frequency

As a result, for the filter H(z) the passband
width 1s approximately /2

The stopband 1s from /2 to &

Note: Hy(z) hasazeroatz=-1 or o =,
which 1s 1n the stopband of the filter



Simple FIR Digital Filters

* A cascade of the simple FIR filter
Hy(z)=1(1+z7")
results 1n an improved lowpass frequency

response as 1llustrated below for a cascade
of 3 sections

First-order FIR lowpass filter cascade




Simple FIR Digital Filters

e The 3-dB cutoff frequency of a cascade of

M sections 1s given by

®, = 2cos”" (2_1/2M)

* For M =3, the above yields @, =0.3027

e Thus, the cascade of first-order sections
yields a sharper magnitude response but at
the expense of a decrease 1n the width of the
passband



Simple FIR Digital Filters

* A better approximation to the ideal lowpass
filter 1s given by a higher-order Moving
Average (MA) filter

* Signals with rapid fluctuations in sample
values are generally associated with high-
frequency components

* These high-frequency components are
essentially removed by an MA filter
resulting 1n a smoother output waveform



Simple FIR Digital Filters

Highpass FIR Digital Filters

* The simplest highpass FIR filter 1s obtained
from the simplest lowpass FIR filter by
replacing z with —z

* This results 1n

Hy(2)=,(1-2z7)



Simple FIR Digital Filters

* Corresponding frequency response 1s given
by | |
H(e’®)= je /' %sin(w/2)
whose magnitude response 1s plotted below

First-order FIR highpass filter




Simple FIR Digital Filters

* The monotonically increasing behavior of
the magnitude function can again be
demonstrated by examining the pole-zero
pattern of the transfer function Hy(z)

* The highpass transfer function H{(z) has a

zero at z= 1 or ® = 0 which 1s 1n the
stopband of the filter



Simple FIR Digital Filters

* Improved highpass magnitude response can
again be obtained by cascading several
sections of the first-order highpass filter

* Alternately, a higher-order highpass filter of
the form

M-1 _
H(z)= A}ano (-)'z"
1s obtained by replacing z with —z 1n the
transfer function of an MA filter



Simple |IR Digital Filters

Lowpass IIR Digital Filters

» A first-order causal lowpass IIR digital
filter has a transfer function given by

HLP(Z):I oc[1+ 1]

2 (l1-az”
where |a| < 1 for stability

e The above transfer function has a zero at z =—1
1.e., at ® = which is in the stopband



Simple |IR Digital Filters

o H;p(z) has areal pole atz= o

* As m increases from 0 to i, the magnitude
of the zero vector decreases from a value of
2 to 0, whereas, for a positive value of o,
the magnitude of the pole vector increases
fromavalueof l-a tol+

* The maximum value of the magnitude

function 1s 1 at ® = 0, and the minimum
valueisOato=m



Simple |IR Digital Filters

e ie, |H p(e!)=1, [Hp(e™)=0

o Therefore, |H;p(e’)| is a monotonically
decreasing function of ® from o =0to ==
as indicated below




Simple |IR Digital Filters

* The squared magnitude function 1s given by
(1- oc)2 (1+cosm)

Hp(e!)] =
e 2(1+ o” — 20,08 ®)

» The derivative of |H;p»(e/®)|* with respect
to ® 1S given by
d [H;p(e’)* —(1-a)*(1+20+0a”)sino
dw B 2(1-20.cos®+ )




Simple |IR Digital Filters

d‘HLP(ef‘”) */do<0 in the range 0 <ow<mn
verifying again the monotonically decreasing
behavior of the magnitude function

* To determine the 3-dB cutoff frequency we set

‘HLP (ejmc ) 2

in the expression for the squared magnitude
function resulting 1n



Simple |IR Digital Filters

(1- oc) (I+cosmw,.) 1

2(1+a” —20.cos®,) 2
or

(1 —oc)2(1 +cosm,.) =1+ o’ —20.cos M,
which when solved yields
200

1+

* The above quadratic equation can be solved
for a yielding two solutions

COS®, = =



Simple |IR Digital Filters

* The solution resulting 1n a stable transfer
function H;p(z)1s given by

_l-sino,
- COosSm,

e [t follows from

H,o(e/®)? = (1—)*(1+ cos o)

2(1+ o’ —20.cos ®)
that H;p(z)is a BR function for |a| < 1



Simple |IR Digital Filters
Highpass IIR Digital Filters

A first-order causal highpass IIR digital filter
has a transfer function given by

HHP(Z):1+05(1—Z 1]

2 \l-az
where |o| < 1 for stability

e The above transfer function has a zero at z =1
1.e., at ® = 0 which 1s 1n the stopband

It 1s a BR function for |a| <1



Simple |IR Digital Filters

* Its 3-dB cutoff frequency m,_ 1s given by
a=(1-sinm,)/coswm,
which is the same as that of H;p(z)
» Magnitude and gain responses of H yp(z)
are shown below

o
™

Magnitude
o
(o]

o
N
T




Example 1-First Order HP Filter

* Design a first-order highpass filter with a 3-
dB cutoff frequency of 0.8

* Now,sin(w,) =sin(0.8w) =0.587785
and cos(0.87) =—-0.80902

 Therefore
a=(-sinw,)/cosw, =-0.5095245



Example 1-First Order HP Filter

e Therefore,

HHP(Z):HO((I 1)

2 \1—-az™

_ —1
— (0.245238 =z :
14+0.5095245 2"




Simple |IR Digital Filters

Bandpass IIR Digital Filters

* A 2nd-order bandpass digital transfer
function 1s given by

- |-z 2
Hpp(z) = H (1—[3(14—0&)214-0(22)

* [ts squared magnitude function 1s

‘H BP (ejm)z

(1- oc)2 (1-cos2m)

- 2[1+ [32 (1+ oc)2 +a’ - 2B(1+ oc)2 COSM+20.cOS2m]



Simple |IR Digital Filters

. |HBP(ej(’°)|2 goestozeroatm=0and w =7

* It assumes a maximum value of 1 at o=, ,
called the center frequency of the bandpass
filter, where

®, = cos ' (B)
* The frequencies ® . and ®.,where |Hgp (€j®)|2

becomes 1/2 are called the 3-dB cutoff
frequencies



Simple |IR Digital Filters

* The difference between the two cutoff
frequencies, assuming ®_., > ®_; 1s called
the 3-dB bandwidth and 1s given by

| 20
B,=0. —®., =cos ( 2)
l+a

* The transfer function Hgzp(z) 1s a BR
function if || < 1 and |B| < 1




Simple |IR Digital Filters

» Plots of |[Hgp(e’®)| are shown below

B =034 a=0.6

Magnitude




Example 2-Second Order BP Filter

* Design a 2nd order bandpass digital filter

with center frequency at 0.4w and a 3-dB
bandwidth of 0.1

» Here B=cos(®,)=cos(0.4r)=0.309017

and
200

1+

* The solution of the above equation yields:
o= 1.376382 and a. = 0.72654253

5 =c0s(B,,) =co0s(0.1) = 0.9510565



Example 2-Second Order BP Filter

* The corresponding transfer functions are

1—2_2

1-0.7343424z7" +1.3763822

Hjpp(z)=-0.18819

and

Hyp(z)=0.13673

1—2_2

1-0.533531z" +0.726542532 2

 The poles of Hzp(z)are atz=0.3671712 =+
j1.11425636 and have a magnitude > 1




Example 2-Second Order BP Filter

* Thus, the poles of Hyp(z) are outside the
unit circle making the transfer function
unstable

 On the other hand, the poles of Hpp(z) are
atz= 0.2667655% j0.8095546 and have a
magnitude of 0.8523746

e Hence, Hpp(z) is BIBO stable



Example 2-Second Order BP Filter

* Figures below show the plots of the
magnitude function and the group delay of

Hpp(z)




Simple |IR Digital Filters

Bandstop IIR Digital Filters

* A 2nd-order bandstop digital filter has a
transfer function given by

l+af 1-2Bz'+ 27
HBS(Z): [ [3 2)

2 1—[3(1+OL)Z_1-|—OLZ
* The transfer function Hz¢(z)1s a BR
function if || < 1 and || <1



Simple |IR Digital Filters

* [ts magnitude response 1s plotted below

0.8 0.8
3 3
206" 206"
5 5
= 04r = 04r




Simple |IR Digital Filters

* Here, the magnitude function takes the
maximum valueof l ato=0and ® =T

[t goes to 0 at ® = m,, where ®, , called the
notch frequency, 1s given by

®, =cos™ (B)

* The digital transfer function H g¢(z) 1S more
commonly called a notch filter



Simple |IR Digital Filters

» The frequencies ®_.; and ®,., where |[Hpgg (e’ (”)|2

becomes 1/2 are called the 3-dB cutoff
frequencies

 The difference between the two cutoff

frequencies, assuming ®., > @, 1S called
the 3-dB notch bandwidth and 1s given by

—1 20
B,=0,—®., =Ccos ( 2)
1+a




Simple |IR Digital Filters

Higher-Order IIR Digital Filters

* By cascading the simple digital filters
discussed so far, we can implement digital
filters with sharper magnitude responses

* Consider a cascade of K first-order lowpass
sections characterized by the transfer
function

HLP(Z):I oc£1+ lj

2 (1-az



Simple |IR Digital Filters

 The overall structure has a transfer function

given by
G oy [lme ez :
= 2 l-az'

» The corresponding squared-magnitude
function 1s given by

| (1—a)2(1+cosoo) ]

2(1+ o — 20,08 )

K
G p(e/®))* =




Simple |IR Digital Filters

e To determine the relation between its 3-dB
cutoff frequency «, and the parameter a,

we set
— 2 _K
(I1-a)"(1+cosm,) 1

2
2(1+a”—20cosm,) | 2

which when solved for a, yields for a stable
Grp(2):

1+(1-C)cosm, —sinoocJ2C— C*

- 1-C+cosm,

00



Simple |IR Digital Filters

where
C = 2(K-D/K

It should be noted that the expression given
above reduces to
_l-smo,
- COSM,

for K=1



Example 3-Design of an LP Filter

* Design a lowpass filter with a 3-dB cutoff

frequency at ., = 0.4r using a single first-order
section and a cascade of 4 first-order sections, and
compare their gain responses

* For the single first-order lowpass filter we have
_l+smw, 1+sin(0.47)

oL = =(.1584
COS®,. cos(0.4m)




Example 3-Design of an LP Filter

* For the cascade of 4 first-order sections, we
substitute K = 4 and get

C =2& DR _>@-D/% _1 6818
 Next we compute
1+(1-C)cosm, —sinoocJ2C—C2

1-C+cosm,

00

_1+(1-1.6818)cos(0.4m) - sin(0.47)/2(1.6818) — (1.6818)

1-1.6818+ cos(0.4m)
=—0.251



Example 3-Design of an LP Filter

* The gain responses of the two filters are
shown below

* As can be seen, cascading has resulted 1n a
sharper roll-off 1n the gain response

of TS
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Comb Filters

* The simple filters discussed so far are
characterized either by a single passband
and/or a single stopband

* There are applications where filters with
multiple passbands and stopbands are required

* The comb filter 1s an example of such filters



Comb Filters

* In 1ts most general form, a comb filter has a
frequency response that 1s a periodic
function of w with a period 2r/L, where L 1s
a positive integer

* If H(z) 1s a filter with a single passband
and/or a single stopband, a comb filter can
be easily generated from it by replacing
each delay in 1ts realization with L delays
resulting in a structure with a transfer
function given by G(z)=H (zL )



Comb Filters

o If |H(e’®)| exhibits a peak at @, , then |G(e/®)
will exhibit L peaks at 0 ,k/L ,0<k <L -1
in the frequency range 0 < W < 2w

» Likewise, if |H (e’ )| has a notch at @,
then |G(e’®)| will have L notches at @ k/L,
0<k<L-11n the frequency range 0 < < 2m

* A comb filter can be generated from either
an FIR or an IIR prototype filter



Comb Filters

* For example, the comb filter generated from
the prototype lowpass FIR filter
Hy(z)= 1 ( +z ) has a transfer function

Go<z> Ho(z")=1(1+z7")
. (e jo | has L notches
at (()x) (%kﬂ)n/L and L
peaks at ® =2m k/L,  °*
0<k<L-1,inthe %

frequency range
0<w<2m

Comb filter from lowpass prototype
I I I




Comb Filters

e Furthermore, the comb filter generated from
the prototype highpass FIR filter
Hi(z)=1 (1 z )has a transfer function

Gi(2) = Hy(z")=! L1-z7")
G, (eJ®)| has L peaks
at o = 2k+D)n/L and L
notches at ® = 2w k/L,
0<k<L-1,1nthe 200,4

frequency range
0<w<2rn

Comb filter from highpass prototype
I T I




Comb Filters

* Depending on applications, comb filters with other
types of periodic magnitude responses can be
casily generated by appropriately choosing the
prototype filter

* For example, the M-point moving average filter

11—z

M-z
has been used as a prototype

H(z) =




Comb Filters

 This filter has a peak magnitude at ® = 0, and
M —1notches at@=2nl// M, 1</ <M —1

* The corresponding comb filter has a transfer

function

— LM
1-z

“@=3ra1

whose magnitude has L peaks at w = 2nk/L ,
0<k<L-land L(M —1)notches at

0=2nk/LM 1<k <L(M-1)



Allpass Transfer Functions

Definition

* An IIR transfer function 4(z) with unity
magnitude response for all frequencies, 1.e.,

AP =1, forall®
1s called an allpass transfer function

* An M-th order causal real-coefficient
allpass transfer function 1s of the form

LAyt d, .z +.+dz""+z7Y

A,(z)==
u () l+dz" +...+d, z""+d, z"




Allpass Transfer Functions

* If we denote the denominator polynomials of
A,,(z)as D,,(2):
D,(z)=1+dz"+...+d, z"" +d, z"

then it follows that 4;,(z) can be written as:
z Dy (z7)

Ay (2) = Dy (2)

» Note from the above that if z =re/?is a pole of a
real coefficient allpass transfer function, then 1t

has a zero at z = 1 e~ /0



Allpass Transfer Functions

e The numerator of a real-coefficient allpass
transfer function 1s said to be the mirror-
image polynomial of the denominator, and
vice versa

 We shall use the notation lNDM (z) to denote
the mirror-image polynomial of a degree-M
polynomial D,,(z), 1.e.,

Dy (2)=z"M Dy, (2)



Allpass Transfer Functions
* The expression
_ 2Dy (=
AM (Z) =
Dy (2)
implies that the poles and zeros of a real-

coefficient allpass function exhibit mirror-
image symmetry in the z-plane

1.5¢
1t

05 [ ///

—02+0.18z71+04z72 +773
1+04z71+0.18272-0.2z3

| ! \
0 - R GEEEE R o
\ ! !

Imaginary Part

A3(z) =

0.5+ \\\ X i

1t

-1.5¢




Allpass Transfer Functions

» To show that |4,,(e’®)|=1 we observe that

2" Dy, (2)

A,(z)==% —
=) D, (z )

 Therefore
2D, (=" 2D, ()
D,(z) D, (z")

+ Hence, |4y, (e7°)|> = Ay (2) 4y (z71) —1

z=JO

Ay (2) 4y (z7) =



Allpass Transfer Functions

* Now, the poles of a causal stable transfer function
must lie iside the unit circle in the z-plane

* Hence, all zeros of a causal stable allpass transfer
function must lie outside the unit circle 1n a
mirror-image symmetry with its poles situated
inside the unit circle

* A causal stable real-coefficient allpass transfer
function 1s a
function or, equivalently, a causal stable allpass
filter 1s a lossless structure



Allpass Transfer Functions

* The magnitude function of a stable allpass
function A(z) satisfies:

<1, foriz>1
A(z)s=1, for z/=1
>1, for zj<I

* Let t(w) denote the group delay function of
an allpass filter A(z), 1.e.,

o(®) =~ ¢ [0, ()]



Allpass Transfer Functions

* The unwrapped phase function 0. (w)of a
stable allpass function 1s a monotonically
decreasing function of ® so that t(w) 1s
everywhere positive in the range 0 <o <7

* The group delay of an M-th order stable
real-coetficient allpass transfer function
satisfies:

chr((o)da) = Mm
0



Allpass Transfer Function

A Simple Application

* A simple but often used application of an
allpass filter 1s as a delay equalizer

* Let G(z) be the transfer function of a digital
filter designed to meet a prescribed
magnitude response

* The nonlinear phase response of (G(z) can be
corrected by cascading it with an allpass
filter A(z) so that the overall cascade has a
constant group delay in the band of interest



Allpass Transfer Function

—  G(2) s A(z) ——

e Since |4A(e’®)|=1, we have
G(e’) A(e”)|=|G(e”)
* Overall group delay 1s the given by the sum
of the group delays of G(z) and A(z)



Minimurm-Phase and Maximum-
Phase Transfer Functions

e Consider the two 1st-order transfer functions:
H(z)=2*2, H,(z)=2", b <1

a\ <1,

z+a zZ+a

* Both transfer functions have a pole inside the
unit circle at the same location z = —a and are

stable

* But the zero of H{(z) is inside the unit circle
at z=—b , whereas, the zero of H,(z) is at
z =—, situated 1n a mirror-image symmetry

1
b



Minimurm-Phase and Maximum-
Phase Transfer Functions

* Figure below shows the pole-zero plots of
the two transfer functions




Minimurm-Phase and Maximum-
Phase Transfer Functions

 However, both transfer functions have an
identical magnitude as

Hl(Z)Hl(Z_l) = Hz(Z)Hz(Z_l)
* The corresponding phase functions are

. . SIn® . SIN®
arg[H (e’”)]=tan™' —tan
b+cosm a+CoS®
. , bsinw . SIn®
arg[H,(e’*)] = tan™ —tan”

l+bcosw a+ Ccosm



Minimurm-Phase and Maximum-
Phase Transfer Functions

* Figure below shows the unwrapped phase
responses of the two transfer functions for

a=0.8 and b=-0.5

Phase, degrees

AL N - o = W
/
LE
o)



Minimurm-Phase and Maximum-
Phase Transfer Functions

* From this figure it follows that H,(z) has
an excess phase lag with respect to H(z)

* Generalizing the above result, we can show
that a causal stable transfer function with all
zeros outside the unit circle has an excess
phase compared to a causal transfer
function with 1dentical magnitude but
having all zeros inside the unit circle



Minimurm-Phase and Maximum-
Phase Transfer Functions

* A causal stable transfer function with all zeros
inside the unit circle 1s called a minimum-phase
transfer function

A causal stable transfer function with all zeros
outside the unit circle 1s called a maximum-
phase transfer function

* Any nonminimum-phase transfer function can be
expressed as the product of a mimnimum-phase
transfer function and a stable allpass transfer
function



Complementary Transfer Functions

* A set of digital transfer functions with
complementary characteristics often finds
useful applications in practice

* Four useful complementary relations are
described next along with some applications



Complementary Transfer Functions

Delay-Complementary Transfer Functions

* A set of L transfer functions, {H;(z)},
0<i<L-1,1s defined to be delay-
complementary of each other if the sum of
their transfer functions 1s equal to some
integer multiple of unit delays, 1.¢.,

L1
Y Hi(z)=Bz"", p=0
=0

where 7, 1s a nonnegative integer



Complementary Transfer Functions

* A delay-complementary pair {H(z),H(z)}
can be readily designed if one of the pairs 1s

a known Type 1 FIR transfer function of
odd length

* Let Hy(z) be a Type 1 FIR transfer function
of length M = 2K+1

* Then its delay-complementary transfer
function 1s given by

H\(z)=z"% —H(2)



Complementary Transfer Functions

 Let the magnitude response of H(z) be
equal to 1+ p in the passband and less than
or equal to o, 1n the stopband where & 5 and
6, are very small numbers

* Now the frequency response of H,(z)can be
expressed as

Hy(e/®) = e /A Hy (o)

where H o(®) 1s the amplitude response



Complementary Transfer Functions

* Its delay-complementary transfer function
H,(z) has a frequency response given by

H\(e/®) = e /X H, (0) = e /K°[1 - Hy ()]

* Now, in the passband, 1 -0 5= Hy(w)<1+8 s
and 1n the stopband, —o0, < Hy(®) <0,

* It follows from the above equation that in
the passband, -0, < H 1(®)=<0, and in the
stopband, 1-90, < Hj(®w) <149,



Complementary Transfer Functions

* Asaresult, H;(z) has a complementary
magnitude response characteristic, with a
stopband exactly i1dentical to the passband
of Hy(z), and a passband that 1s exactly
1dentical to the stopband of Hy(z)

* Thus, if Hy(z) is a lowpass filter, H;(z) will
be a highpass filter, and vice versa



Complementary Transfer Functions

* At frequency ®, at which
ﬁO((Do) = [_"’[1(0)0) =0.5

the gain responses of both filters are 6 dB
below their maximum values

* The frequency w, 1s thus called the 6-dB
crossover frequency



Example 4

e Consider the Type 1 bandstop transfer function
H ys(2) = é A+z)*'A-4z7 +5z7+527° -4z7° + z7%)

* Its delay-complementary Type 1 bandpass transfer
function 1s given by

Hpp(z)=z7' — Hpg(2)

= —é A-z)*'A+4z72 +5z7 +527 +4z7° +z77)



Example 4

* Plots of the magnitude responses of Hg¢(z)
and H gp(z) are shown below
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Complementary Transfer Functions

Allpass Complementary Filters

* A set of M digital transfer functions, {H;(z)},
0<i<M -1, 1s defined to be allpass-
complementary of each other, if the sum of
their transfer functions 1s equal to an allpass
function, 1.e.,

M—1
ZHi(Z) = A(z)
i=0



Complementary Transfer Functions

Power-Complementary Transfer Functions

* A set of M digital transfer functions, {H;(z)} ,
0<i<M -1, 1s defined to be power-
complementary of each other, if the sum of
their square-magnitude responses 1s equal to

a constant K for all values of m, 1.e.,
M-1 5

> Hi(e/*) =K,  forallo

=0



Complementary Transfer Functions

* By analytic continuation, the above
property 1s equal to
M —1
S H(z2)H;(z7) =K, for all
i=0
for real coefficient H;(z)
e Usually, by scaling the transfer functions,

the power-complementary property 1s
defined for K =1



Complementary Transfer Functions

* For a pair of power-complementary transfer
functions, H(z) and H,(z), the frequency m,
where |Hy(e/®)|? =|H;(e/®)|> =0.5, is
called the cross-over frequency

At this frequency the gain responses of both

filters are 3-dB below their maximum
values

e Asaresult, ®, 1s called the 3-dB cross-
over frequency



Complementary Transfer Functions

 Consider the two transfer functions H(z)
and H(z) given by

Ho(2) = [ 4y(2) + 4 (2)

H\(2) = [ 4y(2) - 4 (2)
where 4y(z) and A4;(z) are stable allpass
transfer functions

» Note that Hy(z)+ Hy(z) = 4y(z)
* Hence, Hy(z) and H,(z)are allpass
complementary




Complementary Transfer Functions

* It can be shown that Hy(z) and H{(z) are
also power-complementary

* Moreover, Hy(z) and H(z) are bounded-
real transfer functions



Complementary Transfer Functions

Doubly-Complementary Transter Functions

* A set of M transfer functions satistying both
the allpass complementary and the power-

complementary properties 1s known as a
doubly-complementary set



Complementary Transfer Functions

* A pair of doubly-complementary IIR
transfer functions, Hy(z) and H(z), with a
sum of allpass decomposition can be simply
realized as indicated below

|l/2 > AO(Z) +H— Yy (2)
X(z) >
141z > D— 1(2)
Yo(2) Y1(z)
H()(Z):X(Z) Hl(z):)((z)



Example 5

* The first-order lowpass transfer function

EQJ(Z):lza(1+ {)

l-oz
can be expressed as

Hyp(2)= ;(H‘Wf) - Ag(2) + A4(2)]

l-oz
where )

—o+z
AO(Z) =1, AI(Z) — 1

l—oz



Example 5

* [ts power-complementary highpass transfer
function 1s thus given by

HHP(Z)— [Ao(2) = A1(2)] = (1—_%211)

l-az
_l+af 1-z7"
2 \l-az!

* The above expression 1s precisely the first-
order highpass transfer function described
earlier




Complementary Transfer Functions

» Figure below demonstrates the allpass
complementary property and the power
complementary property of H;p(z) and

H pp(2)
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Complementary Transfer Functions

Power-Symmetric Filters

* A real-coefficient causal digital filter with a
transfer function H(z) 1s said to be a power-
symmetric filter 1f it satisfies the condition

HEHE Y+ H(-2)H(-z ) =K

where K > 0 1s a constant



Complementary Transfer Functions

* It can be shown that the gain function G(®)
of a power-symmetric transfer function at ®
= T 1S given by

10log K =3 dB

 If we define G(z) = H(-z), then 1t follows
from the definition of the power-symmetric

filter that H(z) and G(z) are power-
complementary as

H(z)H (z_l) + G(z)G(z_l) = a constant



Complementary Transfer Functions

Conjugate Quadratic Filter

* If a power-symmetric filter has an FIR
transfer function H(z) of order N, then the
FIR digital filter with a transfer function

G(z)=z'H(z™h
1s called a conjugate quadratic filter of
H(z) and vice-versa



Complementary Transfer Functions

* It follows from the definition that G(z) 1s
also a power-symmetric causal filter

* It also can be seen that a pair of conjugate
quadratic filters H(z) and G(z) are also
power-complementary



Example 6

* Let H(z)=1- 2z 46277 +327°
* We form
H(z)H (Z_l) + H(—2)H (—Z_l
=(1- 2z 462724327 (1—-2z+ 62% + 323)
+(1+ 2z +627% — 32_3)(1 +2z+6z% — 323)
= (323 +4z+450+4z71+ 32_3)
+(=32° —4z+50—4z"1=327) =100

e > H(z) is a power-symmetric transfer
function



Digital Two-Pairs

* The LTI discrete-time systems considered
so far are single-input, single-output
structures characterized by a transfer
function

* Often, such a system can be efficiently
realized by interconnecting two-1nput, two-
output structures, more commonly called
two-pairs



Digital Two-Pairs

* Figures below show two commonly used
block diagram representations of a two-pair

Xl—> —»Yz Xl—> —»Yl

Yl «— <—X2 X2—> > Y2

* Here Y] and Y, denote the two outputs, and
X1 and X, denote the two inputs, where the
dependencies on the variable z have been
omitted for simplicity



Digital Two-Pairs

* The mput-output relation of a digital two-
pair 1s given by
ni_{ar 42| X

T =11 a2

is called the transfer matrix of the two-pair



Digital Two-Pairs

* It follows from the input-output relation that
the transfer parameters can be found as
follows:

! I
"L, MTx
r Y
X P
11Xx,=0 21X,=0



Digital Two-Pairs

* An alternative characterization of the two-
pair 1s 1n terms of 1ts chain parameters as

X, :[A B]Yz_
Y, |TlC D] x,

where the matrix I' given by

"=[¢ )

1s called the chain matrix of the two-pair



Digital Two-Pairs

* The relation between the transfer parameters and
the chain parameters are given by

C AD - BC 1
tllzgﬂ [, = y Iy 1’ [y,

t t it — 5l
A:L, p=-"22 c-1_ p_faln =i
171 171 171 171



Two-Pair Interconnection Schemes

Cascade Connection - I'-cascade

X — [A' BJ ’ [A" B’J—’an
. |1lc DL c'" D'|l_y
Yl = = X'2 Yln = = 2
| ¢ DX,
Xl _ A" B" Y2
45 | LC DX,




Two-Pair Interconnection Schemes

e But from figure, X; =Y, and ¥} = X,

* Substituting the above relations in the first
equation on the previous slide and
combining the two equations we get

"

_Xl'_:_Av Bv _An Bn_ Y2
Y, | IC DJ|C D|Xx,
 Hence,

|:A B:|: Av B _An Bn_
C D C' Dv _C" D"_




Two-Pair Interconnection Schemes

Cascade Connection - t-cascade

! Yl Xl "
2 = {41 fl'z} ; {tlnl tl"Z} 1
by Il — o 1 2] |

Y, X,

) 1 ha || X
X5

Y, 1 I



Two-Pair Interconnection Schemes

» But from figure, X; =¥ and X, =Y,

* Substituting the above relations in the first
equation on the previous slide and
combining the two equations we get

Bol_{ar fo |t fo| X

Y, by Iy | to | X




Two-Pair Interconnection Schemes

Constrained Two-Pair

‘ G(z)

h 4 X

H(z)
e It can be shown that

H(Z)_E_CJI—D-G(Z)
- X; A+B-G(2)

t17tr1G(2)




