
LTI DiscreteLTI Discrete--Time SystemsTime Systems

in Transform Domainin Transform Domain
Simple FiltersSimple Filters

Comb Filters Comb Filters (Optional reading)(Optional reading)

AllpassAllpass Transfer FunctionsTransfer Functions

Minimum/Maximum Phase Transfer FunctionsMinimum/Maximum Phase Transfer Functions

Complementary Filters Complementary Filters (Optional reading)(Optional reading)

Digital TwoDigital Two--Pairs Pairs (Optional reading)(Optional reading)

Tania Stathaki

811b

t.stathaki@imperial.ac.uk



Simple Digital FiltersSimple Digital Filters

• Later in the course we shall review various 

methods of designing frequency-selective 

filters satisfying prescribed specifications

• We now describe several low-order FIR and 

IIR digital filters with reasonable selective 

frequency responses that often are 

satisfactory in a number of applications



Simple FIR Digital FiltersSimple FIR Digital Filters

• FIR digital filters considered here have 

integer-valued impulse response coefficients

• These filters are employed in a number of 

practical applications, primarily because of 

their simplicity, which makes them amenable 

to inexpensive hardware implementations
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Lowpass FIR Digital Filters

• The simplest lowpass FIR digital filter is the 2-

point moving-average filter given by

• The above transfer function has a zero at z = -1

and a pole at z = 0

• Note that here the pole vector has a unity 

magnitude for all values of ω
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Simple FIR Digital FiltersSimple FIR Digital Filters

• On the other hand, as ω increases from 0 to 

π, the magnitude of the zero vector 

decreases from a value of 2, the diameter of

the unit circle, to 0

• Hence, the magnitude response                  is 

a monotonically decreasing function of ω
from ω = 0 to ω = π
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Simple FIR Digital FiltersSimple FIR Digital Filters

• The maximum value of the magnitude 

function is 1 at ω = 0, and the minimum 

value is 0 at ω = π, i.e.,

• The frequency response of the above filter 

is given by
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Simple FIR Digital FiltersSimple FIR Digital Filters

• The magnitude response                               

is a monotonically decreasing function of ω
)2/cos(|)(| 0 ω=ωjeH
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Simple FIR Digital FiltersSimple FIR Digital Filters

• The frequency            at which

is of practical interest since here the gain in dB is

since the DC gain is 

cω=ω

)(
2

1
)( 0

00
jj
eHeH c =ω

dB32log20)(log20 10
0

10 −≅−= jeH

)(log20)ω(G
ω

10
cj

c eH=

0)(log20 0

10 =jeH



Simple FIR Digital FiltersSimple FIR Digital Filters

• Thus, the gain G(ω) at             is 
approximately 3 dB less than the gain at ω=0

• As a result,       is called the 3-dB cutoff 

frequency

• To determine the value of      we set

which yields
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Simple FIR Digital FiltersSimple FIR Digital Filters

• The 3-dB cutoff frequency       can be 

considered as the passband edge frequency

• As a result, for the filter            the passband

width is approximately π/2

• The stopband is from π/2 to π

• Note: has a zero at             or ω = π,
which is in the stopband of the filter
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Simple FIR Digital FiltersSimple FIR Digital Filters

• A cascade of the simple FIR filter

results in an improved lowpass frequency 

response as illustrated below for a cascade

of 3 sections
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Simple FIR Digital FiltersSimple FIR Digital Filters

• The 3-dB cutoff frequency of a cascade of

M sections is given by

• For M = 3, the above yields

• Thus, the cascade of first-order sections 

yields a sharper magnitude response but at 

the expense of a decrease in the width of the 

passband
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Simple FIR Digital FiltersSimple FIR Digital Filters

• A better approximation to the ideal lowpass

filter is given by a higher-order Moving 

Average (MA) filter

• Signals with rapid fluctuations in sample 

values are generally associated with high-

frequency components

• These high-frequency components are 

essentially removed by an MA filter 

resulting in a smoother output waveform
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Highpass FIR Digital Filters

• The simplest highpass FIR filter is obtained 

from the simplest lowpass FIR filter by 

replacing z with

• This results in
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• Corresponding frequency response is given 

by

whose magnitude response is plotted below
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Simple FIR Digital FiltersSimple FIR Digital Filters

• The monotonically increasing behavior of 

the magnitude function can again be 

demonstrated by examining the pole-zero 

pattern of the transfer function

• The highpass transfer function            has a 

zero at z = 1 or ω = 0 which is in the 

stopband of the filter
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Simple FIR Digital FiltersSimple FIR Digital Filters

• Improved highpass magnitude response can 

again be obtained by cascading several 

sections of the first-order highpass filter

• Alternately, a higher-order highpass filter of 

the form

is obtained by replacing z with        in the 

transfer function of an MA filter
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Simple IIR Digital FiltersSimple IIR Digital Filters

Lowpass IIR Digital Filters

• A first-order causal lowpass IIR digital 

filter has a transfer function given by

where |α| < 1 for stability
• The above transfer function has a zero at         

i.e., at ω = π which is in the stopband
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Simple IIR Digital FiltersSimple IIR Digital Filters

• has a real pole at z = α

• As ω increases from 0 to π, the magnitude 

of the zero vector decreases from a value of 

2 to 0, whereas, for a positive value of α, 
the magnitude of the pole vector increases 

from a value of          to

• The maximum value of the magnitude 

function is 1 at ω = 0, and the minimum 

value is 0 at ω = π
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Simple IIR Digital FiltersSimple IIR Digital Filters

• i.e.,

• Therefore,                    is a monotonically 

decreasing function of ω from ω = 0 to ω = π
as indicated below
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Simple IIR Digital FiltersSimple IIR Digital Filters

• The squared magnitude function is given by

• The derivative of                      with respect 

to ω is given by
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Simple IIR Digital FiltersSimple IIR Digital Filters

in the range                    

verifying again the monotonically decreasing 

behavior of the magnitude function

• To determine the 3-dB cutoff frequency we set                            

in the expression for the squared magnitude 

function resulting in
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Simple IIR Digital FiltersSimple IIR Digital Filters

or

which when solved yields

• The above quadratic equation can be solved 
for α yielding two solutions
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Simple IIR Digital FiltersSimple IIR Digital Filters

• The solution resulting in a stable transfer 

function              is given by

• It follows from

that              is a BR function for |α| < 1
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Simple IIR Digital FiltersSimple IIR Digital Filters

Highpass IIR Digital Filters

• A first-order causal highpass IIR digital filter 

has a transfer function given by

where |α| < 1 for stability
• The above transfer function has a zero at z = 1        

i.e., at ω = 0 which is in the stopband

• It is a BR function for |α| < 1 
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Simple IIR Digital FiltersSimple IIR Digital Filters

• Its 3-dB cutoff frequency       is given by

which is the same as that of

• Magnitude and gain responses of              

are shown below
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Example 1-First Order HP Filter

• Design a first-order highpass filter with a 3-

dB cutoff frequency of 0.8π

• Now,                                                  

and

• Therefore
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Example 1-First Order HP Filter

• Therefore,
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Simple IIR Digital FiltersSimple IIR Digital Filters

Bandpass IIR Digital Filters

• A 2nd-order bandpass digital transfer 

function is given by

• Its squared magnitude function is
2
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Simple IIR Digital FiltersSimple IIR Digital Filters

• goes to zero at ω = 0 and ω = π
• It assumes a maximum value of 1 at             , 

called the center frequency of the bandpass

filter, where

• The frequencies       and       where         

becomes 1/2 are called the 3-dB cutoff 

frequencies 

2|)(| ωj
BP eH

2|)(| ωj
BP eH

oω=ω

)(cos 1 β=ω −
o

1cω 2cω



Simple IIR Digital FiltersSimple IIR Digital Filters

• The difference between the two cutoff 

frequencies, assuming                  is called 

the 3-dB bandwidth and is given by

• The transfer function              is a BR 

function if |α| < 1 and |β| < 1
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Simple IIR Digital FiltersSimple IIR Digital Filters

• Plots of                     are shown below|)(| ωj
BP eH
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Example 2-Second Order BP Filter

• Design a 2nd order bandpass digital filter 
with center frequency at 0.4π and a 3-dB 
bandwidth of 0.1π

• Here

and

• The solution of the above equation yields:
α = 1.376382 and α = 0.72654253
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Example 2-Second Order BP Filter

• The corresponding transfer functions are

and

• The poles of              are at z = 0.3671712         
and have a magnitude > 1
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Example 2-Second Order BP Filter

• Thus, the poles of              are outside the 

unit circle making the transfer function 

unstable

• On the other hand, the poles of               are 

at z =                                          and have a 

magnitude of 0.8523746

• Hence,               is BIBO stable
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Example 2-Second Order BP Filter

• Figures below show the plots of the 

magnitude function and the group delay of

)(" zHBP

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

ω/π

M
ag
n
it
u
d
e

0 0.2 0.4 0.6 0.8 1
-1

0

1

2

3

4

5

6

7

ω/π

G
ro
u
p
 d
el
ay
, 
sa
m
p
le
s



Simple IIR Digital FiltersSimple IIR Digital Filters

Bandstop IIR Digital Filters

• A 2nd-order bandstop digital filter has a 

transfer function given by

• The transfer function              is a BR 

function if |α| < 1 and |β| < 1
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Simple IIR Digital FiltersSimple IIR Digital Filters

• Its magnitude response is plotted below
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Simple IIR Digital FiltersSimple IIR Digital Filters

• Here, the magnitude function takes the 

maximum value of 1 at ω = 0 and ω = π
• It goes to 0 at            , where      , called the

notch frequency, is given by

• The digital transfer function              is more 

commonly called a notch filter
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Simple IIR Digital FiltersSimple IIR Digital Filters

• The frequencies       and       where         

becomes 1/2 are called the 3-dB cutoff 

frequencies

• The difference between the two cutoff 

frequencies, assuming                  is called 

the 3-dB notch bandwidth and is given by
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Higher-Order IIR Digital Filters

• By cascading the simple digital filters 

discussed so far, we can implement digital 

filters with sharper magnitude responses

• Consider a cascade of K first-order lowpass

sections characterized by the transfer 

function
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Simple IIR Digital FiltersSimple IIR Digital Filters

• The overall structure has a transfer function 

given by

• The corresponding squared-magnitude 

function is given by
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Simple IIR Digital FiltersSimple IIR Digital Filters

• To determine the relation between its 3-dB 

cutoff frequency       and the parameter α, 
we set

which when solved for α, yields for a stable  
:
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Simple IIR Digital FiltersSimple IIR Digital Filters

where

• It should be noted that the expression given 

above reduces to

for K = 1
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• Design a lowpass filter with a 3-dB cutoff 

frequency at                  using a single first-order 

section and a cascade of 4 first-order sections, and 

compare their gain responses

• For the single first-order lowpass filter we have
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Example 3-Design of an LP Filter

• For the cascade of 4 first-order sections, we 

substitute K = 4 and get

• Next we compute
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Example 3-Design of an LP Filter

• The gain responses of the two filters are 

shown below

• As can be seen, cascading has resulted in a 

sharper roll-off in the gain response
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Comb FiltersComb Filters

• The simple filters discussed so far are 

characterized either by a single passband

and/or a single stopband

• There are applications where filters with 

multiple passbands and stopbands are required

• The comb filter is an example of such filters



Comb FiltersComb Filters

• In its most general form, a comb filter has a 

frequency response that is a periodic 

function of ω with a period 2π/L, where L is 
a positive integer

• If H(z) is a filter with a single passband

and/or a single stopband, a comb filter can 

be easily generated from it by replacing 

each delay in its realization with L delays 

resulting in a structure with a transfer 

function given by )()( LzHzG =



Comb FiltersComb Filters

• If                exhibits a peak at      , then        

will exhibit L peaks at ,                      

in the frequency range

• Likewise, if                has a notch at      , 

then                will have L notches at           , 

in the frequency range

• A comb filter can be generated from either 

an FIR or an IIR prototype filter

|)(| ωjeH

|)(| ωjeH

|)(| ωjeG

|)(| ωjeGpω

oω

Lkp /ω

Lko /ω

10 −≤≤ Lk

10 −≤≤ Lk

π<ω≤ 20

π<ω≤ 20



Comb FiltersComb Filters

• For example, the comb filter generated from            

the prototype lowpass FIR filter                 

has a transfer function

• has L notches                                    

at ω = (2k+1)π/L and L
peaks at ω = 2π k/L,
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Comb FiltersComb Filters

• Furthermore, the comb filter generated from            

the prototype highpass FIR filter                 

has a transfer function

• has L peaks                                    

at ω = (2k+1)π/L and L
notches at ω = 2π k/L,
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Comb FiltersComb Filters

• Depending on applications, comb filters with other 

types of periodic magnitude responses can be 

easily generated by appropriately choosing the 

prototype filter

• For example, theM-point moving average filter

has been used as a prototype
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Comb FiltersComb Filters

• This filter has a peak magnitude at ω = 0, and

notches at                   ,

• The corresponding comb filter has a transfer 

function

whose magnitude has L peaks at                  ,  

and                notches at    

, 
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AllpassAllpass Transfer FunctionsTransfer Functions

Definition

• An IIR transfer function A(z) with unity 

magnitude response for all frequencies, i.e.,

is called an allpass transfer function

• An M-th order causal real-coefficient 

allpass transfer function is of the form
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AllpassAllpass Transfer FunctionsTransfer Functions

• If we denote the denominator polynomials of

as            :

then it follows that             can be written as:

• Note from the above that if               is a pole of a 

real coefficient allpass transfer function, then it 

has a zero at 
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AllpassAllpass Transfer FunctionsTransfer Functions

• The numerator of a real-coefficient allpass

transfer function is said to be themirror-

image polynomial of the denominator, and 

vice versa

• We shall use the notation              to denote 

the mirror-image polynomial of a degree-M

polynomial             , i.e.,
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AllpassAllpass Transfer FunctionsTransfer Functions

• The expression                                     

implies that the poles and zeros of a real-

coefficient allpass function exhibitmirror-

image symmetry in the z-plane
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AllpassAllpass Transfer FunctionsTransfer Functions

• To show that                       we observe that

• Therefore

• Hence,
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AllpassAllpass Transfer FunctionsTransfer Functions

• Now, the poles of a causal stable transfer function 

must lie inside the unit circle in the z-plane

• Hence, all zeros of a causal stable allpass transfer 

function must lie outside the unit circle in a 

mirror-image symmetry with its poles situated 

inside the unit circle

• A causal stable real-coefficient allpass transfer 

function is a lossless bounded real (LBR)

function or, equivalently, a causal stable allpass

filter is a lossless structure
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• The magnitude function of a stable allpass

function A(z) satisfies:

• Let τ(ω) denote the group delay function of 
an allpass filter A(z), i.e.,
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• The unwrapped phase function           of a 

stable allpass function is a monotonically 

decreasing function of ω so that τ(ω) is
everywhere positive in the range 0 < ω < π

• The group delay of an M-th order stable 

real-coefficient allpass transfer function 

satisfies:
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AllpassAllpass Transfer FunctionTransfer Function

A Simple Application

• A simple but often used application of an 
allpass filter is as a delay equalizer

• Let G(z) be the transfer function of a digital 
filter designed to meet a prescribed 
magnitude response

• The nonlinear phase response of G(z) can be 
corrected by cascading it with an allpass
filter A(z) so that the overall cascade has a 
constant group delay in the band of interest
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• Since                    , we have

• Overall group delay is the given by the sum 

of the group delays of G(z) and A(z)                 
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MinimumMinimum--Phase and MaximumPhase and Maximum--

Phase Transfer FunctionsPhase Transfer Functions

• Consider the two 1st-order transfer functions:

• Both transfer functions have a pole inside the 

unit circle at the same location            and are 

stable

• But the zero of            is inside the unit circle  

at             , whereas, the zero of            is at 

situated in a mirror-image symmetry 
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Phase Transfer FunctionsPhase Transfer Functions

• Figure below shows the pole-zero plots of 

the two transfer functions
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Phase Transfer FunctionsPhase Transfer Functions

• However, both transfer functions have an 

identical magnitude as

• The corresponding phase functions are
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Phase Transfer FunctionsPhase Transfer Functions

• Figure below shows the unwrapped phase 

responses of the two transfer functions for

a=0.8 and b=-0.5
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MinimumMinimum--Phase and MaximumPhase and Maximum--

Phase Transfer FunctionsPhase Transfer Functions

• From this figure it follows that            has 

an excess phase lag with respect to

• Generalizing the above result, we can show 

that a causal stable transfer function with all 

zeros outside the unit circle has an excess 

phase compared to a causal transfer 

function with identical magnitude but 

having all zeros inside the unit circle
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Phase Transfer FunctionsPhase Transfer Functions

• A causal stable transfer function with all zeros 

inside the unit circle is called aminimum-phase 

transfer function

• A causal stable transfer function with all zeros 

outside the unit circle is called amaximum-

phase transfer function

• Any nonminimum-phase transfer function can be 

expressed as the product of a minimum-phase 

transfer function and a stable allpass transfer 

function



Complementary Transfer FunctionsComplementary Transfer Functions

• A set of digital transfer functions with 

complementary characteristics often finds 

useful applications in practice

• Four useful complementary relations are 

described next along with some applications
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Delay-Complementary Transfer Functions

• A set of L transfer functions,             ,            

, is defined to be delay-

complementary of each other if the sum of 

their transfer functions is equal to some 

integer multiple of unit delays, i.e.,

where       is a nonnegative integer
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• A delay-complementary pair                    

can be readily designed if one of the pairs is 

a known Type 1 FIR transfer function of 

odd length

• Let            be a Type 1 FIR transfer function 

of lengthM = 2K+1

• Then its delay-complementary transfer 

function is given by
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• Let the magnitude response of            be 

equal to           in the passband and less than 

or equal to      in the stopband where      and         

are very small numbers

• Now the frequency response of            can be 

expressed as

where            is the amplitude response
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• Its delay-complementary transfer function   

has a frequency response given by

• Now, in the passband,                                 

and in the stopband,

• It follows from the above equation that in 

the passband,                                and in the 

stopband,
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• As a result,            has a complementary 

magnitude response characteristic, with a 

stopband exactly identical to the passband

of           , and a passband that is exactly 

identical to the stopband of

• Thus, if            is a lowpass filter,           will 

be a highpass filter, and vice versa
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• At frequency       at which 

the gain responses of both filters are 6 dB

below their maximum values

• The frequency       is thus called the 6-dB

crossover frequency
oω

oω
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Example 4

• Consider the Type 1 bandstop transfer function

• Its delay-complementary Type 1 bandpass transfer 

function is given by
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• Plots of the magnitude responses of           

and               are shown below
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Allpass Complementary Filters

• A set of M digital transfer functions,             ,   

, is defined to be allpass-

complementary of each other, if the sum of 

their transfer functions is equal to an allpass

function, i.e.,
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Power-Complementary Transfer Functions

• A set of M digital transfer functions,              ,   

, is defined to be power-

complementary of each other, if the sum of 

their square-magnitude responses is equal to 

a constant K for all values of ω, i.e.,
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• By analytic continuation, the above 

property is equal to

for real coefficient

• Usually, by scaling the transfer functions, 

the power-complementary property is 

defined for K = 1
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• For a pair of power-complementary transfer 

functions,           and           , the frequency   

where                                                   , is 

called the cross-over frequency

• At this frequency the gain responses of both 

filters are 3-dB below their maximum 

values

• As a result,       is called the 3-dB cross-

over frequency
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• Consider the two transfer functions           

and            given by

where           and           are stable allpass

transfer functions

• Note that

• Hence,           and           are allpass

complementary

)(0 zH

)(1 zH

)]()([)( 102
1

0 zAzAzH +=

)(0 zA )(1 zA

)]()([)( 102
1

1 zAzAzH −=

)()()( 010 zAzHzH =+

)(0 zH )(1 zH



Complementary Transfer FunctionsComplementary Transfer Functions

• It can be shown that            and           are 

also power-complementary

• Moreover,            and            are bounded-

real transfer functions
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Doubly-Complementary Transfer Functions

• A set of M transfer functions satisfying both 

the allpass complementary and the power-

complementary properties is known as a 

doubly-complementary set
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• A pair of doubly-complementary IIR 

transfer functions,           and           , with a 

sum of allpass decomposition can be simply 

realized as indicated below
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Example 5

• The first-order lowpass transfer function

can be expressed as

where
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Example 5

• Its power-complementary highpass transfer 

function is thus given by

• The above expression is precisely the first-

order highpass transfer function described 

earlier
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• Figure below demonstrates the allpass

complementary property and the power 

complementary property of              and)(zHLP
)(zHHP
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Power-Symmetric Filters

• A real-coefficient causal digital filter with a 

transfer function H(z) is said to be a power-

symmetric filter if it satisfies the condition

where K > 0 is a constant

KzHzHzHzH =−−+ −− )()()()( 11
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• It can be shown that the gain function G(ω) 
of a power-symmetric transfer function at ω
= π is given by

• If we define                        , then it follows 

from the definition of the power-symmetric 

filter that H(z) and G(z) are power-

complementary as
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Conjugate Quadratic Filter

• If a power-symmetric filter has an FIR 

transfer function H(z) of order N, then the 

FIR digital filter with a transfer function

is called a conjugate quadratic filter of 

H(z) and vice-versa
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• It follows from the definition that G(z) is 

also a power-symmetric causal filter

• It also can be seen that a pair of conjugate 

quadratic filters H(z) and G(z) are also 

power-complementary



Example 6

• Let

• We form

• H(z) is a power-symmetric transfer 

function
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Digital TwoDigital Two--PairsPairs

• The LTI discrete-time systems considered 

so far are single-input, single-output 

structures characterized by a transfer 

function

• Often, such a system can be efficiently 

realized by interconnecting two-input, two-

output structures, more commonly called

two-pairs



Digital TwoDigital Two--PairsPairs

• Figures below show two commonly used 

block diagram representations of a two-pair

• Here     and      denote the two outputs, and   

and       denote the two inputs, where the 

dependencies on the variable z have been 

omitted for simplicity
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Digital TwoDigital Two--PairsPairs

• The input-output relation of a digital two-

pair is given by

• In the above relation the matrix ττττ given by

is called the transfer matrix of the two-pair
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Digital TwoDigital Two--PairsPairs

• It follows from the input-output relation that 

the transfer parameters can be found as 

follows:
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Digital TwoDigital Two--PairsPairs

• An alternative characterization of the two-

pair is in terms of its chain parameters as

where the matrix ΓΓΓΓ given by

is called the chain matrix of the two-pair
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Digital TwoDigital Two--PairsPairs

• The relation between the transfer parameters and 

the chain parameters are given by
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TwoTwo--Pair Interconnection SchemesPair Interconnection Schemes

Cascade Connection - ΓΓΓΓ-cascade

• Here
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TwoTwo--Pair Interconnection SchemesPair Interconnection Schemes

• But from figure,              and

• Substituting the above relations in the first 

equation on the previous slide and 

combining the two equations we get

• Hence,
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TwoTwo--Pair Interconnection SchemesPair Interconnection Schemes

Cascade Connection - ττττ-cascade

• Here
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TwoTwo--Pair Interconnection SchemesPair Interconnection Schemes

• But from figure,              and

• Substituting the above relations in the first 

equation on the previous slide and 

combining the two equations we get

• Hence,
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Constrained Two-Pair

• It can be shown that
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