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Frequency Response of an
LTI Discrete-Time System

* The well known convolution sum description of an
LTI discrete-time system 1s given by

ylnl= Y hlk]x[n—k]

k=—00

» Taking the DTFT of both sides we obtain
Y(e’”)= Tylnle /"

> ( ih[k]X[n—k])e_jm

n=—o0 \ k=—00



Frequency Response of an
LTI Discrete-Time System

* Or,

V()= ¥ h[k]( ixw]e‘f“’(“")j

k=—00 f=—00

-3 h[k]( ix[z]e‘fwfje‘f‘”"
k=—0o0 f=—o0

\_ J
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Frequency Response of an
LTI Discrete-Time System

 Hence, we can write
Y(e!®) = ( > hlk] _J“’ij(eﬂ”) H (/)X (/)
k=—o0

* The above equation relates the input and the output
of an LTI system in the frequency domain

e [t follows that
H('®)=Y(e/®)/ X (e/®)



Frequency Response of an
LTI Discrete-Time System

» The function H(e’®) is called the frequency
response of the LTI discrete-time system

» H(e’®) provides a frequency-domain
description of the system

o H(e’®) is precisely the DTFT of the impulse
response {A#[n]} of the system



Frequency Response of an
LTI Discrete-Time System

» H(e’®), in general, is a complex function
of ® with a period 27

It can be expressed 1n terms of 1ts real and
Imaginary part
H(e’®) = H,o(e!") + j Hyp ()
or, in terms of 1its magnitude and phase,
H(e!®) = ‘H(ejm)‘ /(@)

where .
O(w) =arg H(e’?)



Frequency Response of an
LTI Discrete-Time System

* Note: Magnitude and phase functions are real
functions of ®, whereas the frequency response 1s a
complex function of ®

 If the impulse response A[#] 1s real then it 1s proven
that the magnitude function is an even function of ®:

H(e/”) = H(e )
and the phase function 1s an odd function of m:
O(w) =—-0(—m)

* Likewise, for a real impulse response #[n], H,, (e’®)
is even and H; (e’/®) is odd



Magnitude and Phase Response

* The function ‘H (e (”)‘ 1s called the
magnitude response and the function 0(w)
1s called the phase response of an LTI
discrete-time system

* Design specifications for an LTI discrete-
time system, in many applications, are
given 1n terms of the magnitude response or
the phase response or both



Gain Function
Attenuation/Loss Function

* In some cases, the magnitude function 1s
specified 1n decibels as

G(w) =201log, |H(e™)| dB

where G(m) 1s called the gain function

* The negative of the gain function
A(o) =-G(0)

1s called the attenuation or loss function



Eigenfunction of a System

 [If the input of an LTI system 1s a single
complex exponential function

jo,n

x[n]=¢e""", —co<n<w

then 1t follows that the output 1s given by

o0

y[n]ZZh ]0) (n—k) _ (Zh ](ij jo,n

k=—0

e Let
H(e™)= > hkle™"
k=—00



Eigenfunction of a System

Therefore, we can write
ynl=H(e™)e""

Thus for a complex exponential input signal
e’*" | the output of an LTI discrete-time
system 1s also a complex exponential signal
of the same frequency multiplied by a
complex constant H (')

jo,n

e 1s called eigenfunction of the system



Frequency Response of a System
Described by a Difference Equation

e Consider an LTI discrete-time system characterized
by a difference equation

S odiyn—k1=YLo prxln—k]

* Its frequency response 1s obtained by taking the
DTFT of both sides of the above equation




Example 1 — Frequency Response
of a Moving Average (MA) Filter

* Consider the M-point moving average filter
with an impulse response given by

I/M, 0<n<M-1
h[n]= ‘ .
] { 0, otherwise
* Its frequency response is then given by

M -1
H(e’"‘))zL e /"
M n=0



Example 1 - Moving Average Filter

e Or,

] 1—e /M

M 1-¢e/°

H(e’®) =

| . sin(Mw/2) o= (M—1)0/2
M sin(w/2)




Example 1 - Moving Average Filter

* Thus, the magnitude response of the M-
point moving average filter 1s given by

1 sin(Mw/2)
M sm(w/2)

‘H(ej‘”)

and the phase response is given by

(M -Do 22l 2 7k

A@)==———=7 Zﬂ(m_ﬁ)




Example 1 - Moving Average Filter

Frequency Response Computation
Using MATLAB

* The function £freqz (h,w) can be used to
determine the values of the frequency
response vector h at a set of given
frequency points w

* From h, the real and imaginary parts can be
computed using the functions real and
imag, and the magnitude and phase
functions using the functions abs and
angle



Example 1 - Moving Average Filter

Frequency Response Computation
Using MATLAB

 The magnitude and phase responses of an M-point moving
average filter are shown below

* The jumps 1n the phase function occur at the zeros of the
frequency response, where the sinc function changes sign.
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Example 1 - Moving Average Filter

Frequency Response Computation
Using MATLAB

* The phase response of a discrete-time
system when determined by a computer
may exhibit jumps by an amount 2wt caused
by the way the arctangent function 1s
computed

* The phase response can be made a
continuous function of ® by “unwrapping”
the phase response across the jumps



Example 1 - Moving Average Filter

Frequency Response Computation
Using MATLAB

* To this end the function unwrap can be

used, provided the computed phase 1s 1n
radians

e The jumps by the amount of 27 should not
be confused with the jumps caused by the
zeros of the frequency response as indicated
in the phase response of the moving average
filter



Example 2 — Steady-State Response

* Determine the steady-state output y[n] of a real
coefficient LTI discrete-time system with a

frequency response H (e/®) for an input

x[n]=Acos(w,n+¢), —00<n<w

* Note that the frequency response determines the
steady-state response of an LTI discrete-time
system to a sinusoidal input



Example 2 — Steady State Response

* We can express the iput x[#n] as
xX[n]= gln]+ g *[n]
where |
gln]= éAe](l)e](Don
* Now the output of the system for an mput
e/ D" 13 simply

H(ejwo )ejwon



Example 2 — Steady State Response

* Because of linearity, the response v[#n] to an
input g[n] 1s given by

v[n]= éAej‘l’H(ej‘”O )e/ Po

» Likewise, the output v¥*[n] to the input g*[n]
1S

v¥[n]= ;Ae_j‘l’H(e_j‘”O )e /@



Example 2 — Steady State Response

* Combining the last two equations we get

yln]=v[n]+v*[n]

_ %Aeml_[(ejwo )ejwon + % Ae‘j¢H(e‘j°°0 )e—jwon

! AH (™)

) {ejg(m‘))ej Pl 4 o7 10(00) gm0 o= I00n }

= A|H (™)

cos(w n+0(w, )+ @)



Example 2 — Steady State Response

* Thus, the output y[n] has the same sinusoidal
waveform as the input with two differences:
(1) the amplitude is multiplied by H(e/®) ,
the value of the magnitude function at ® =,

(2) the output has a phase lag relative to the
input by an amount 6(w, ), the value of the
phase function at ® = ®,,



Example 3 — Response to a
Causal Exponential Sequence

» The expression for the steady-state response
developed earlier assumes that the system 1s
initially relaxed before the application of
the mput

 In practice, excitation (1nput) to a discrete-
time system 1s usually a right-sided
sequence applied at some sample index n=n,

* We develop the expression for the output
for such an mput



Example 3 — Response to a
Causal Exponential Sequence

* Without any loss of generality, assume x[n]=0
forn <0

* From the input -output relation

1=> . hlk]x[n—k]

we observe that for an 1nput
x[n] = e/ u[n]

the output 1s given by

= ( > hlk]e o) )M[n]
k=0



Example 3 — Response to a
Causal Exponential Sequence

* Or, y[n (Zh e~ Jok )ej(””u[n]

e The output forn <01s y[n] =0
* The output for n > 0 1s given by

=[§:h[k]ej“)k jej“)”

k=0

=(Zh[k]ej(”k )ej(”” —( Zh[k]e‘jmk ]ej(”"
k=0

k=n+1



Example 3 — Response to a
Causal Exponential Sequence

e Or, )
y[n] = H(ejCO)ej(Dn _[ Zh[k]e—jwk )ejmn

k=n+1

e The first term on the RHS 1s the same as
that obtained when the mput 1s applied at
n = 0 to an 1nitially relaxed system and 1s
the steady-state response:

Vor[n]=H(e/®)e/O"



Example 3 — Response to a
Causal Exponential Sequence

e The second term on the RHS 1s called the
transient response°

Verln

S k]

k=n+1

le jwk:jejmn

* To determine the effect of the above term
on the total output response, we observe

‘Jﬁr[n

] =

S hk]e-

k=n+1

je(k—n)

< i\h[k

k=n+1

] <



Example 3 — Response to a
Causal Exponential Sequence

 For a causal, stable LTI IIR discrete-time
system, 4[n] 1s absolutely summable

 As aresult, the transient response y;.[7] is a
bounded sequence

e Moreover, as n — o0,
Z;coznﬂ‘h[k]‘ — 0

and hence, the transient response decays to
Zero as n gets very large



Example 3 — Response to a
Causal Exponential Sequence

e For a causal FIR LTI discrete-time system
with an impulse response of length N + 1,

hin]=0forn>N
* Hence, y,.[n]=0 forn> N -1

» Here the output reaches the steady-state
value y . [n]=H(e/?®)e/*" atn=N



The Transfer Function

* The transfer function 1s a generalization of
the frequency response function

* The convolution sum description of an LTI
discrete-time system with an impulse
response A[n] 1s given by

yinl= 2 hlk]x[n—k]

k=—00



The Transfer Function

» Taking the z-transform of both sides we get

Y(z)= Y y[nlz"= > ( Zh[k]x[n—k]]z"

N=—00 n=—00 \ k=—00

= i h[k]( ix[n—k]znj

k:—OO n=—~o0

= h[k][ ix[e]z‘“”‘)j
{=—0o0

k=—o0



The Transfer Function

. Or, Y(z)= i h[k]( ixmzszk
{=—0o0

k=—00
— )

. X\EZ)
* Therefore, Y(z)= L Zh[k]z_k ]X (2)

k=—00
—

H\EZ)
* Thus, Y(z) = H(z)X(2)



The Transfer Function

 Hence,
H(z)=Y(2)/ X(z)

* The function H(z), which 1s the z-transform of
the impulse response A[n] of the LTI system,
is called the transfer function or the system
function

 The inverse z-transform of the transfer
function H(z) yields the impulse response 4[]



The Transfer Function

* Consider an LTI discrete-time system
characterized by a difference equation

N M ]
Zk:()dky[n — k] — Zk:()ka_n — k]
e [ts transfer function 1s obtained by taking

the z-transform of both sides of the above
equation

M —k
Zk:() Pz

N —k
Zk:o dyz

H(z)=



The Transfer Function

* Or, equivalently
M M-k
Zk:() Prz
N N—-k
Zk:() dyz
* An alternate form of the transfer function is given by
M _
Po szl (I-¢,z |
H(z)= L0 =
0 szl (1=4z")

H(z)= =)




The Transfer Function

Or, equivalently

H(Z)—po (N—M)Hk 1(Z fk)
dy Hk 1(Z Ax)

&1, &9,...,6) are the finite zeros, and
A1, Ay,..., Ay are the tinite poles of H(z)

If N> M, there are additional (N —

atz=10

If N <M, there are additional (M
atz=20

M) zeros

— N)poles



The Transfer Function

e If M > N then H(z) can be re-expressed as

N~ B®@
H(z)= 2
(2) ;n * D)

where the degree of F(z)1s less than N

* The rational function F(z)/ D(z) 1s called a
proper fraction



The Transfer Function

* Simple Poles: In most practical cases, the
rational z-transform of interest H(z) 1s a
proper fraction with simple poles

» Letthe polesof Hz)beat z=A4, ,1<k<N

A partial-fraction expansion of H(z) 1s then
of the form




The Transfer Function

* The constants p, in the partial-fraction
expansion are called the residues and are
given by

p,=(-24,z )H(z)

* Each term of the sum 1n partial-fraction
expansion has an ROC given by z > ‘/Iz‘
and, thus has an inverse transform of the

form p, (2,)" pln]

Z:/Ig



The Transfer Function - Stability

* Therefore, the impulse response 4[n] 1s of
infinite duration (IIR) and 1s given by

W)=Y p,(A,)" un]

» Thus, the ROC is given by |z| > max|4,]
k

* Furthermore, for stability, /lk\ <1, which means
that all poles must lie inside the unit circle



The Transfer Function - Stability

* Therefore, for a stable and causal digital filter for
which A[n] 1s a right-sided sequence, the ROC will
include the unit circle and the entire z-plane
including the point z = o0

* On the other hand, FIR digital filters with bounded
impulse response are always stable

e Problem: Use the above approach to determine the
inverse of a rational z-transform of a noncausal
sequence



The Transfer Function - Stability

* On the other hand, an IIR filter may be
unstable if not designed properly

 In addition, an originally stable IIR filter
characterized by infinite precision
coefficients may become unstable when
coefficients get quantized due to
implementation



Example 4 — Effects of Quantization

e Consider the causal IIR transfer function

1

H(z)=
1-1.845z"1 +0.8505862 2

* The plot of the impulse response coetficients
1s shown on the next slide



Example 4 — Effects of Quantization

N

Amplitude

0 10 20 30 40 50 60 70
Time index n

* As can be seen from the above plot, the
impulse response coefficient 4[n] decays
rapidly to zero value as »n increases



Example 4 — Effects of Quantization

* The absolute summability condition of /[n]
1s satisfied

* Hence, H(z) 1s a stable transfer function

 Now, consider the case when the transfer
function coefficients are rounded to values

with 2 digits after the decimal point:
]

1-1.85z"1 +0.85272

H(z)=



Example 4 — Effects of Quantization

* A plot of the impulse response of iz\[n] 1S
shown below

(@)
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Time index n



Example 4 — Effects of Quantization

* In this case, the impulse response coefficient
h[n] increases rapidly to a constant value as
7 INCreases

* Hence, the absolute summability condition of
1s violated

* Thus, H(z)1is an unstable transfer function



Example 5 — Transfer Function
of a Moving Average Filter

* Consider the M-point moving-average FIR
filter with an 1impulse response

in = /M, 0<n<M -1
[n]= 0, otherwise

* Its transfer function 1s then given by

1 M -1 M ZM—I

1=z B
MO =y 2 = -1 MM -1




Example 5 — Moving Average Filter

 The transfer function has M zeros on the
unit circle at z=e/2™/'M o<k < M —1

e There are M —1 poles at z= 0 and a single
pole atz=1 M=8

 The poleatz=1
exactly cancels the
zero atz =1

 The ROC 1s the entire LN A
z-plane except z =0 e e R TR

0.57

Imaginary Part




Example 6 — An lIR Filter

* A causal LTI IIR digital filter 1s described
by a constant coefficient difference equation
given by
vin]=xIn—-1]-12x[n-2]+x[n-3]+1.3y[n—1]
—1.4y[n—-2]+0.222 y[n — 3]
e [ts transfer function 1s therefore given by
z 1122724273
1-1.3z71+1.04272 - 0.222273

H(z)=




Example 6 — An lIR Filter

e Alternate forms:
z2 —12z+1

z3-1.3z2+1.04z-0.222
~ (z-0.6+j0.8)(z—0.6— j0.8)
(z-0.3)(z- 0.5+ 0.7)(z=0.5- j0.7)

H(z)=

* Note: Poles farthest from . *
z=0 have a magnitude £°
.5l 3
~0.74

-1t

. ROC: |2/ >+/0.74 Toes 0 os




Frequency Response from
Transfer Function

 If the ROC of the transfer function H(z)
includes the unit circle, then the frequency
response H (e/®)of the LTI digital filter can
be obtained simply as follows:

H(e/®)=H(z)

* For a real coefficient transfer function H(z)
it can be shown that
H(el®) = H(e/®)H * (e/®)
= H(e/*)H(e™/®)= H(z)H(z"")_

z=eJ®



Frequency Response from
Transfer Function

For a stable rational transfer function in the
form

H(Z) pO (N M) Hk 1(2 fk)
dy Hk 1(2 Ax)

the factored form of the frequency response
1s given by

H(e/®) = L0 gjo(N=M) Hk (€2 =&p)
dy H CAEY
k=1 k




Frequency Response from
Transfer Function

It 1s convenient to visualize the contributions
of the zero factor (z —§,; )and the pole factor
(z—A;) from the factored form of the
frequency response

The magnitude function 1s given by

‘H (efﬂ))‘ = &‘eja)(N—M)‘ Hy:l‘ej Y- ‘ik‘
% [T e/ =2




Frequency

Response from

Transfer Function

which reduces to

Hﬁl‘ejo) — E)k‘

‘H(ejm)‘ — 1;’93

H;cvzl‘ejm - kk‘

» The phase response for a rational transfer
function 1s of the form

arg H(e/®) =arg(py/dy) + (N — M)

M | N |
+ > arg(e/® — &) — D arg(e/® — ;)
k=1

k=1



Frequency Response from
Transfer Function

e The magnitude-squared function of a real-
coetfficient transter function can be
computed using

H(ej“))2 =

Po

2T (0 — g (e o — &)

dy

[T (e = hp)(e 7@ —2%)



Geometric Interpretation of
Frequency Response Computation

* The factored form of the frequency
response

H(e/®) = L0 gjo(N=M) Hk (€2 =&p)
dy H (e/® —)\;)
k=1 k

1s convenient to develop a geometric
interpretation of the frequency response
computation from the pole-zero plot as @
varies from 0 to 27 on the unit circle



Geometric Interpretation of
Frequency Response Computation

* The geometric interpretation can be used to
obtain a sketch of the response as a function
of the frequency

A typical factor in the factored form of the
frequency response 1s given by

(e/® —pe/?)
where pe/? is a zero if it is zero factor or is
a pole 1f 1t 1s a pole factor



Geometric Interpretation of
Frequency Response Computation

* As shown below 1n the z-plane the factor
(e/© — pe/®) represents a vector starting at
the point z = pe/? and ending on the unit
circle at z = e/®

jlm z

(%
.

7/
/
bl Rez




Geometric Interpretation of
Frequency Response Computation

* As o 1s varied from 0 to 27, the tip of the
vector moves counterclockise from the
point z = 1 tracing the unit circle and back
to the point z = 1



Geometric Interpretation of
Frequency Response Computation

* As indicated by |
[T e’ =8
oy _ [P0 k=1 k

the magnitude response [H (e/“)| at a

specific value of o 1s given by the product
of the magnitudes of all zero vectors
divided by the product of the magnitudes of
all pole vectors




Geometric Interpretation of
Frequency Response Computation

o Likewise, from
arg H(e/®) =arg(py/dy) + (N — M)
+ 2 pLiarg(e’” =) -2 arg (e — 1)
we observe that the phase response
at a specific value of o 1s obtained by
adding the phase of the term py /d, and the
linear-phase term w(N — M) to the sum of

the angles of the zero vectors minus the
angles of the pole vectors



Geometric Interpretation of
Frequency Response Computation

* Thus, an approximate plot of the magnitude
and phase responses of the transfer function
of an LTI digital filter can be developed by
examining the pole and zero locations

* Now, a zero (pole) vector has the smallest
magnitude when @ = ¢



Geometric Interpretation of
Frequency Response Computation

* To highly attenuate signal components in a
specified frequency range, we need to place
zeros very close to or on the unit circle 1n
this range

» Likewise, to highly emphasize signal
components 1n a specified frequency range,
we need to place poles very close to or on
the unit circle in this range



The Concept of Filtering

* One application of an LTI discrete-time
system 1s to pass certain frequency
components of an mput sequence without
any distortion (1f possible) and to block
other frequency components

* Such systems are called digital filters and
one of the main subjects of discussion in
this course



The Concept of Filtering

e Letus consider the IDTFT

y[n] = IH (/)X (e’®)e’™" dw
o s

* This transform expresses an arbitrary
system output signal as a linear weighted
sum of an infinite number of exponential
sequences



The Concept of Filtering

* Thus, by appropriately choosing the values
of the magnitude function ‘H (e’ ‘”)‘ of the
LTI digital filter, some of the mput
frequency components can be selectively
heavily attenuated or filtered with respect to
the others



The Concept of Filtering

* To understand the mechanism behind the
design of frequency-selective filters,
consider a real-coefficient LTI discrete-time
system characterized by a magnitude
function

, o,
0, o,<ow<mw

H(e/®) = {



The Concept of Filtering

* We apply an mput
x[n]=Acoswn+ Bcoso,n, O0<w, <o, <w, <7
to this system

* Because of linearity, the output of this system is of
the form

y|ln]= A‘H (ej ®1 )‘ cos(ooln + 9(0)1))

= B‘H (e/®2 )‘ cos(@yn +0(w;))



The Concept of Filtering

* As
H(e/®) =1, H(e/*2)=0
the output reduces to
y|n] = A‘H (e/™ )‘ cos(w7 +0(wy))
* Thus, the system acts like a lowpass filter

* In the following example, we consider the
design of a very simple digital filter



Example 7 - The Concept of Filtering

* An mput signal consists of a sum of two
sinusoidal sequences of angular frequencies 0.1
rad/sample and 0.4 rad/sample

* We need to design a highpass filter that will pass
the high-frequency components of the input but
block the low-frequency components

* For simplicity, assume the filter to be an FIR
filter of length 3 with an impulse response:

hl0]=hl2] = o, A[1] =P



Example 7 - The Concept of Filtering

* The convolution sum description of this
filter 1s then given by

yin]=h[0]x[n]+ All]x[n—1]+ A[2]x[n—2]
=ax[n]|+PBx[n—-1]+ox[n—-2]

* y[n] and x[n] are, respectively, the output
and the input sequences

* Design Objective: Choose suitable values
of a and B3 so that the output is a sinusoidal
sequence with a frequency 0.4 rad/sample



Example 7 - The Concept of Filtering

* Now, the frequency response of the FIR

filter 1s given by

H(e/®) = h[0]+ A[1]e /@ + h[2]e~/2®
= o(l+e/%?) +Be /@

(oJ® L o=JO\ .

—2a € re jeﬂ” +Be/?

2

=(2o.cos®+B)e




Example 7 - The Concept of Filtering

* The magnitude and phase functions are
‘H(ej(”)‘ =20.cos®m+[3
O(w)=—m

* In order to block the low-frequency
component, the magnitude function at
o = 0.1 should be equal to zero

* Likewise, to pass the high-frequency
component, the magnitude function at
® = 0.4 should be equal to one



Example 7 - The Concept of Filtering

* Thus, the two conditions that must be
satisfied are

H(ej()'l)‘ =20.c0s(0.1)+B=0
H(ej0'4)‘ =20.c0s(0.4)+pB =1
* Solving the above two equations we get

a=-6.76195
B=13.456335




Example 7 - The Concept of Filtering

* Thus the output-input relation of the FIR filter 1s
given by
y[n]=-6.76195(x{n]+ x[n—2])+13.456335 x{n —1]
where the mput 1s
x[n]={cos(0.1n) + cos(0.4n)}u[n]



Example 7 - The Concept of Filtering

* Figure below shows the plots generated by
running this program

4
B
T e e 2
- x[n]
1
s
£
E
<

Time index n



Example 7 - The Concept of Filtering

* The first seven samples of the output are
shown below

n cos(0.1n) cos(0.4n) x([n] y[n]

0O 1.0 1.0 2.0 —13.52390

1 09950041 0.9210609 1.9160652 13.956333
2 0.9800665 0.6967067 1.6767733 0.9210616
3  0.9553364 0.3623577 1.3176942 0.6967064
4 09210609 —0.0291995 0.8918614 0.3623572
S5 0.8775825 —0.4161468 0.4614357 —0.0292002
6 0.8253356 —0.7373937 0.0879419 —0.4161467




Example 7 - The Concept of Filtering

* From this table, 1t can be seen that,
neglecting the least significant digit,

y|n]=cos(0.4(n—1)) forn>2

* Computation of the present value of the
output requires the knowledge of the
present and two previous input samples

* Hence, the first two output samples, y[0]
and y[ 1], are the result of assumed zero
input sample values at n =—1 and 7 =—2



Example 7 - The Concept of Filtering

» Therefore, first two output samples
constitute the transient part of the output

* Since the impulse response is of length 3,
the steady-state 1s reached at n = N =2

* Note also that the output 1s delayed version
of the high-frequency component cos(0.4n)
of the mput, and the delay 1s one sample
period



Phase and Group Delays

* The output y[n] of a frequency-selective
LTI discrete-time system with a frequency
response H (e/®) exhibits some delay
relative to the input x[z] caused by the
nonzero phase response 0(w) = arg {H (e/®)}
of the system

* For an mput

x[n]= Acos(w,n+¢), —0<n <o



Phase and Group Delays

the output 1s
yn]= AH(e/™)

* Thus, the output lags in phase by 6(w,)
radians

cos(w,n+0(w,)+ )

* Rewriting the above equation we get

cos((%(n + H(®,) j + (I)j
(DO

yn]= AH (e/®)




Phase and Group Delays

» This expression indicates a time delay,
known as phase delay, at ® = ®, given by

Tp(mo) — _O(Q()DO)

0,

* Now consider the case when the mput
signal contains many sinusoidal
components with different frequencies that
are not harmonically related



Phase and Group Delays

* In this case, each component of the iput
will go through different phase delays when
processed by a frequency-selective LTI
discrete-time system

* Then, the output signal, in general, will not
look like the 1mnput signal

* The signal delay now is defined using a
different parameter



Phase and Group Delays

* To develop the necessary expression,
consider a discrete-time signal x[n] obtained
by a double-sideband suppressed carrier
(DSB-SC) modulation with a carrier
frequency o, of a low-frequency sinusoidal
signal of frequency o,

x|n]= Acos(w, n)cos(mw.n)



Phase and Group Delays

* The input can be rewritten as
x[n]= fcos(cogn) -+ ‘gcos(ooun)
where ®) =0, —®, and ®, =0, +0,
» Let the above input be processed by an LTI
discrete-time system with a frequency

response H (e/®)satisfying the condition

H(e/®)=1 for o, <o<wm,



Phase and Group Delays

* The output y[n] 1s then given by

y[n] = gcos(mgn +0(wy))+ gcos(mun +0(w,))

O(®, )+ 9(%))605(@ - 0(w,) —G(W)j
2 ¢ 2

= Acos(oocn +

* Note: The output 1s also 1n the form of a modulated
carrier signal with the same carrier frequency o,
and the same modulation frequency , as the mput



Phase and Group Delays

 However, the two components have
different phase lags relative to their
corresponding components in the input

* Now consider the case when the modulated
input 1s a narrowband signal with the
frequencies w, and ®,, very close to the
carrier frequency o, , 1.. @, 1S very small



Phase and Group Delays

* In the neighborhood of w_, we can express
the unwrapped phase response 0.(w) as

0.()= 0, () + )

€)) _
0=,

'((D_(DC)

by making a Taylor’s series expansion and
keeping only the first two terms

e Using the above formula we now evaluate
the time delays of the carrier and the
modulating components



Phase and Group Delays

* In the case of the carrier signal we have

. ec(mu) + Oc(mﬁ) -~ _ec(mc)
20, o,

which 1s seen to be the same as the phase
delay 1f only the carrier signal is passed
through the system



Phase and Group Delays

* In the case of the modulating component we
have

_8.(»,)-0.(0,)  db.(w)
o,-0,  do
e The parameter

O=0,

do, (o)
dm =0,

is called the group delay or envelope delay
caused by the system at ® = ®,

Tg(mc) -~



Phase and Group Delays

* The group delay 1s a measure of the
linearity of the phase function as a function
of the frequency

* It 1s the time delay between the waveforms
of underlying continuous-time signals
whose sampled versions, sampled at ¢ = nT,
are precisely the mput and the output
discrete-time signals



Phase and Group Delays

* If the phase function and the angular
frequency w are 1n radians per second, then
the group delay 1s in seconds

* Figure below 1llustrates the evaluation of
the phase delay and the group delay

B(w)

Ay
o
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xﬁ&; B(w)
2
4
."}l 1
f’:-’ !
LR\ !
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Phase and Group Delays

* Figure below shows the waveform of an
amplitude-modulated input and the output
generated by an LTI system

A, .
Ry

Ml
Rl




Phase and Group Delays

* Note: The carrier component at the output 1s
delayed by the phase delay and the envelope
of the output is delayed by the group delay
relative to the waveform of the underlying
continuous-time mput signal

* The waveform of the underlying continuous-
time output shows distortion when the group
delay of the LTI system 1s not constant over
the bandwidth of the modulated signal



Phase and Group Delays

* If the distortion 1s unacceptable, a delay
equalizer 1s usually cascaded with the LTI
system so that the overall group delay of the
cascade 1s approximately linear over the band
of interest

* To keep the magnitude response of the parent
LTI system unchanged the equalizer must
have a constant magnitude response at all
frequencies



Example 8 - Phase and Group Delay
of a Second Order FIR Filter

 Thep

nase function of the FIR filter

y

n]=ax[n]+ Bx[n—1]+ax[n—-2]

with > 2a 1s B(®) = -

* Hence its group delay is given by 7, (®) =1



Example 8 - Phase and Group Delay
of an M-order MA filter

* For the M-point moving-average filter

il — /M, 0<n<M -1
[n]= 0, otherwise

the phase function 1s

(M -1 iz ( Zﬂkj
O(w)=- + O——
() > ﬂ; U o=

* Hence its group delay 1s

M —1
Tg(O))=—2



