Imperial College London

Signals and Systems

Tutorial Sheet 2

DR TANIA STATHAKI

READER (ASSOCIATE PROFFESOR) IN SIGNAL PROCESSING IMPERIAL COLLEGE LONDON

Problem1

A Linear Time Invariant (LTI) system is specified by the system equation:

$$
\left(D^{2}+4 D+4\right) y(t)=D f(t)
$$

(i) Find the characteristic polynomial, characteristic equation, characteristic roots and characteristic modes of this system.

Answer

The characteristic polynomial is $\left(\lambda^{2}+4 \lambda+4\right)$.
The characteristic equation is $\left(\lambda^{2}+4 \lambda+4\right)=0=(\lambda+2)^{2}$.
This equation has repeated roots of $\lambda=-2$ (two roots).
Therefore, the characteristic modes are: $e^{-2 t}$ and $t e^{-2 t}$.
(ii) Find $y_{0}(t)$, the zero-input component of the response $y(t)$ for $t \geq 0$, if the initial conditions are $y_{0}(0)=3, \dot{y}_{0}(0)=-4$.

Answer

$y_{0}(t)=\left(c_{1}+c_{2} t\right) e^{-2 t}, \dot{y}_{0}(t)=\left(-2 c_{1}-2 c_{2} t+c_{2}\right) e^{-2 t}$.
$y_{0}(0)=3 \Rightarrow c_{1}=3$ and $\dot{y}_{0}(0)=-6+c_{2}=-4 \Rightarrow c_{2}=2$.
Therefore, $y_{0}(t)=(3+2 t) e^{-2 t}$.

Problem 2

A Linear Time Invariant (LTI) system is specified by the system equation:

$$
D(D+1) y(t)=(D+2) f(t)
$$

(i) Find the characteristic polynomial, characteristic equation, characteristic roots and characteristic modes of this system.

Answer

The characteristic polynomial is $\left(\lambda^{2}+\lambda\right)$.
The characteristic equation is $\left(\lambda^{2}+\lambda\right)=0=\lambda(\lambda+1)$.
This equation has roots of $\lambda=0$ and $\lambda=-1$.
Therefore, the characteristic modes are: $e^{0 t}=1$ and e^{-t}.
(ii) Find $y_{0}(t)$, the zero-input component of the response $y(t)$ for $t \geq 0$, if the initial conditions are $y_{0}(0)=1, \dot{y}_{0}(0)=1$.

Answer

$y_{0}(t)=c_{1}+c_{2} e^{-t}, \dot{y}_{0}(t)=-c_{2} e^{-t}$.
$y_{0}(0)=c_{1}+c_{2}=1$ and $\dot{y}_{0}(0)=-c_{2}=1 \Rightarrow c_{1}=2, c_{2}=-1$.
Therefore, $y_{0}(t)=2-e^{-t}$.

Problem 3

A Linear Time Invariant (LTI) system is specified by the system equation:

$$
\left(D^{2}+9\right) y(t)=(3 D+2) f(t)
$$

(i) Find the characteristic polynomial, characteristic equation, characteristic roots and characteristic modes of this system.

Answer

The characteristic polynomial is $\left(\lambda^{2}+9\right)$.
The characteristic equation is $\left(\lambda^{2}+9\right)=0=(\lambda-j 3)(\lambda+j 3)$.
This equation has roots of $\lambda=j 3$ and $\lambda=-j 3$.
Therefore, the characteristic modes are: $e^{-j 3 t}$ and $e^{j 3 t}$.
(ii) Find $y_{0}(t)$, the zero-input component of the response $y(t)$ for $t \geq 0$, if the initial conditions are $y_{0}(0)=0, \dot{y}_{0}(0)=6$.
Answer
$y_{0}(t)=c \cos (3 t+\theta), \dot{y}_{0}(t)=-3 c \sin (3 t+\theta)$
$y_{0}(0)=c \cos (\theta)=0, \dot{y}_{0}(0)=-3 c \sin (\theta)=6 \Rightarrow c \sin (\theta)=-2$
$c=2$ and $\theta=-\frac{\pi}{2}$. Therefore, $y_{0}(t)=2 \cos \left(3 t-\frac{\pi}{2}\right)=2 \sin (3 t)$.

Problem 4

Evaluate the following integrals. This question is easy.
(i) $\int_{-\infty}^{\infty} f(\tau) \delta(t-\tau) d \tau=f(t)$
(ii) $\int_{-\infty}^{\infty} \delta(\tau) f(t-\tau) d \tau=f(t-0)=f(t)$
(iii) $\int_{-\infty}^{\infty} \delta(t) e^{-j \omega t} d t=e^{-j \omega 0}=1$
(iv) $\int_{-\infty}^{\infty} \delta(t-2) \sin (\pi t) d t=\sin (2 \pi)=0$

Prohlem 5

Find the unit impulse response of the LTI system specified by the equation:

$$
\frac{d^{2} y(t)}{d t^{2}}+4 \frac{d y(t)}{d t}+3 y(t)=\frac{d x(t)}{d t}+5 x(t)(\text { written also as } Q(D) y(t)=P(D) x(t)) .
$$

Answer

Characteristic polynomial: $\left(\lambda^{2}+4 \lambda+3\right)$.
Characteristic equation: $\left(\lambda^{2}+4 \lambda+3\right)=0=(\lambda+1)(\lambda+3)$. Roots $\lambda=-1$ and $\lambda=-3$.
Characteristic modes: e^{-t} and $e^{-3 t}$.
The impulse response $h(t)$ is given by $h(t)=\left[P(D) y_{n}(t)\right] u(t)$.
$y_{n}(t)$ is what we previously called $y_{0}(t)$ with $y_{n}(0)=0, \dot{y}_{n}(0)=1$.
$y_{n}(t)=c_{1} e^{-t}+c_{2} e^{-3 t}, \dot{y}_{n}(t)=-c_{1} e^{-t}-3 c_{2} e^{-3 t}$.
$y_{n}(0)=c_{1}+c_{2}=0, \dot{y}_{n}(0)=-c_{1}-3 c_{2}=1, c_{1}=\frac{1}{2}, c_{2}=-\frac{1}{2}$.
$y_{n}(t)=c_{1} e^{-t}+c_{2} e^{-3 t}=\frac{1}{2} e^{-t}-\frac{1}{2} e^{-3 t}$
$h(t)=\left[\frac{d y_{n}(t)}{d t}+5 y_{n}(t)\right] u(t)=\left(-\frac{1}{2} e^{-t}+\frac{3}{2} e^{-3 t}+\frac{5}{2} e^{-t}-\frac{5}{2} e^{-3 t}\right) u(t)=$
$\left(2 e^{-t}-e^{-3 t}\right) u(t)$.

Problem 6

Find the unit impulse response of the LTI system specified by the equation.

$$
\begin{gathered}
(D+1)\left(D^{2}+5 D+6\right) y(t)=(5 D+9) f(t) \text { or } \\
Q(D) y(t)=P(D) x(t))
\end{gathered}
$$

Answer

The characteristic polynomial is $(\lambda+1)\left(\lambda^{2}+5 \lambda+6\right)$.
The characteristic equation is $(\lambda+1)\left(\lambda^{2}+5 \lambda+6\right)=0=(\lambda+1)(\lambda+2)$ $(\lambda+3)$.
This equation has roots of $\lambda=-1, \lambda=-2$ and $\lambda=-3$.
Therefore, the characteristic modes are: $e^{-t}, e^{-2 t}$ and $e^{-3 t}$.
The impulse response $h(t)$ is given by

$$
h(t)=\left[P(D) y_{n}(t)\right] u(t)
$$

where $u(t)$ is the unit step function. $y_{n}(t)$ is what we previously called $y_{0}(t)$
with $y_{n}(0)=0, \dot{y}_{n}(0)=0$ and $\ddot{y}_{n}(0)=1$.
$y_{n}(t)=c_{1} e^{-t}+c_{2} e^{-2 t}+c_{3} e^{-3 t}$
$\dot{y}_{n}(t)=-c_{1} e^{-t}-2 c_{2} e^{-2 t}-3 c_{3} e^{-3 t}$
$\ddot{y}_{n}(t)=c_{1} e^{-t}+4 c_{2} e^{-2 t}+9 c_{3} e^{-3 t}$

Problem 6 cont.

Input-output differential equation cont.

$$
(D+1)\left(D^{2}+5 D+6\right) y(t)=(5 D+9) f(t)
$$

Answer cont.
$y_{n}(t)=c_{1} e^{-t}+c_{2} e^{-2 t}+c_{3} e^{-3 t} \Rightarrow y_{n}(0)=c_{1}+c_{2}+c_{3}=0$
$\dot{y}_{n}(t)=-c_{1} e^{-t}-2 c_{2} e^{-2 t}-3 c_{3} e^{-3 t} \Rightarrow \dot{y}_{n}(0)=-c_{1}-2 c_{2}-3 c_{3}=0$
$\ddot{y}_{n}(t)=c_{1} e^{-t}+4 c_{2} e^{-2 t}+9 c_{3} e^{-3 t} \Rightarrow \ddot{y}_{n}(0)=c_{1}+4 c_{2}+9 c_{3}=1$

Adding (1) and (2) we obtain $-c_{2}-2 c_{3}=0 \Rightarrow-2 c_{2}-4 c_{3}=0$
Adding (3) and (2) we obtain $2 c_{2}+6 c_{3}=1$
Adding (4) and (5) we obtain $c_{3}=\frac{1}{2}$ and replacing in (4) we get $-2 c_{2}-2=0$
$\Rightarrow c_{2}=-1$
We replace c_{2} and c_{3} in (1) and we obtain $c_{1}-1+\frac{1}{2}=0 \Rightarrow c_{1}=\frac{1}{2}$

Problem 6 cont.

Input-output differential equation cont.

$$
(D+1)\left(D^{2}+5 D+6\right) y(t)=(5 D+9) f(t)
$$

Answer cont.

We found that

$$
\begin{gathered}
y_{n}(t)=c_{1} e^{-t}+c_{2} e^{-2 t}+c_{3} e^{-3 t}=\frac{1}{2} e^{-t}-e^{-2 t}+\frac{1}{2} e^{-3 t} \\
\frac{d y_{n}(t)}{d t}=-\frac{1}{2} e^{-t}+2 e^{-2 t}-\frac{3}{2} e^{-3 t}
\end{gathered}
$$

The impulse response $h(t)$ is given by
$h(t)=\left[P(D) y_{n}(t)\right] u(t)$ with $P(D)=5 D+9$. Therefore,
$5 \frac{d y_{n}(t)}{d t}=-\frac{5}{2} e^{-t}+10 e^{-2 t}-\frac{15}{2} e^{-3 t}$ and $9 y_{n}(t)=\frac{9}{2} e^{-t}-9 e^{-2 t}+\frac{9}{2} e^{-3 t}$
$5 \frac{d y_{n}(t)}{d t}+9 y_{n}(t)=2 e^{-t}+e^{-2 t}-3 e^{-3 t}$
Therefore,

$$
h(t)=\left(2 e^{-t}+e^{-2 t}-3 e^{-3 t}\right) u(t)
$$

