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« The forward and inverse Fourier transform are defined for aperiodic
signals as: x(1)

X(w) =Fx(®)] = Joox(t)e_j‘“tdt

x(t) =F X (w)] = %ij(a))ej“’tdw ;

 You can immediately observe the functional similarity with Laplace
transform.

* Note that for periodic signals we use Fourier Serles

xr, () = z D, e/"®@ol

xT; ]( ] )

n=—oo
_ f To/2 TO (t)e dt or ; 0 & y
1 2177 2
= — _jn(l)ot e
D T, Jone full period XT, (t)e dt, wg To
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A unit rectangular window (also called a unit gate) function rect(x):

fo 1 I rect (x) 1 rect (é)
x| > =
2
1 1
rect(x) = < > lxl =3 v >
1 1 0 1 T 0 T
\1 X E 2 2 2 2

A unit triangle function A(x):

( 1 LA A®) LA
0 x| = =

— —_ 0 1 x—> 0
kl 2|x| x| < > _% 1 X
Interpolation function sinc(x):
sinc(x) = ( ) or sinc(x) = Stn(mx)

X
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More about the sinc(x) function

* The sinc(x) function is an even function of x.
* sinc(x) = 0 when sin(x) =0, i.e.,
x = +m, +2m,+3m, ... except when x = 0
where sinc(0) = 1. This can be proven by the
L’'Hospital’s rule. — —
« sinc(x) is the product of an \/—3“_21\/‘”
oscillating signal sin(x) and a
monotonically decreasing function 1/x.

Therefore, it is a damping oscillation with period |

: 3w
27 with amplitude decreasing as 1/x. sine (7)
"“v/\ /’-\v"
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Fourier transformof x(t) = rect(t/7)

Evaluation: X(w) = Flx(t)] = ffooo rect G) e Jotdt

Since rect (9 = 1 for _77 <t< % and 0 otherwise, we have:
T
7

e IOt = —
T

. WT
.i (e7/9z — ¢@z) = zein(z)
jw w

X(@) = Flx(0)] = j

_ D et Y = rsine(™ 1) o rsine(“
=T @ = Tsinc( x )= F [rect (T)] = tsinc( » ) or rect (T) & Tsinc( x )
The bandwidth of the function rect (9 IS approximately 27”

Observe that the wider (narrower) the pulse in time the narrower (wider)

the lobes of the sinc function in frequency.
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Fourier transform of the unit impulse x(¢) = 8(t)

Using the sampling property of the impulse we get:
X(w) = F[5(8)] = j S(t)e—Jotdt = 1

As we see, the unit impulse contains all frequencies (or, alternatively,
we can say that the unit impulse contains a component at every

frequency.)
6(t) =1

k x(1) = 8(1) X(w) =1
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Inverse Fourier transformof 6 (w)

Using the sampling property of the impulse we get:
FU8)] = 5= [, 8 (@)el®tdew =

1

2T

Therefore, the spectrum of a constant signal x(t) = 1 is an impulse 2r6(w).

% s §(w) or 1 © 2n8(w)

x() =1

A

X(w) = 2mé(w)

0

[ —>»

0

w —>»>

By looking at current and previous slide, observe the relationship: wide

(narrow) in time, narrow (wide) in frequency.

o Extreme case is a constant everlasting function in one domain and a
Dirac in the other domain.
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Inverse Fourier transform of 6 (w — w,)

« Using the sampling property of the impulse we get:

FH8(w — wo)] = 52 [, 8w — wo)e/“*dw = 5 e/t

« The spectrum of an everlasting exponential e/®ot is a single impulse
located at w = wy, .

_— Lpjwpt =) —
27Te (w — wyp)

e/?t 28 (w — wq)
e 19! 218 (w + W)
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Fourier transform of an everlasting sinusoit coswt

Remember the Euler’s formula:
1 . .
cos wot = (e/@ol 4 g~/ ®@ol)
F{coswyt} = F {l (e/@ot + e‘j“)ot)} = 2 Flej®ot} 4 ZF e iwot)
0 2 2 2

Using the results from previous slides we get:
cos wot © m[d(w + wy) + 6(w — wy)]

The spectrum of a cosine signal has two impulses placed symmetrically
at the frequency of the cosine and its negative.

X(w) T
1

f— ) 0 W o=

x(1)
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Fourier transform of any periodic signal

« The Fourier series of a periodic signal x(t) with period T, is given by:

x(t) = X%, D,, e/@0t ¢y, = i—n
0

« By taking the Fourier transform on both sides we get:

X(w) =2m Z D, §(w —nwy)

n=-—oo
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Consider an impulse train
51, (t) = £% 6 (t = nTy)

The Fourier series of this impulse train can be shown to be:
2

81,(t) = X% Dy, /™0t where wy = T—: and D,, = Tio
Therefore, using results from slide 8 we get:
X(w) = F{61, ()} = Tiozzc’oo Fle/nwot) = Tiozf;;_oo 278 (w — nwy), Wy = ZT—”
X(w) = wp Xp=—o0 6(w — Nwg) = wy 5w0 (w)
The Fourier transform of an impulse train in time (denoted by 67, (t)) is an
impulse train in frequency (denoted by §,, (w)) .

The closer (further) the pulses in time the further (closer) in freguency.
Or,()

ATt

—2T, -1, ]0 Ty 2Ty P> 2wy ~wy |0 @y 2wy >

(‘L’(}S (f J

3
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Linearity and conjugate properties

Linearity
If x;(t) © X;(w) and x,(t) © X,(w), then
a1 x1(£)+azx;(t) © a1 X1 (w) + a X, (w)

Property of conjugate of a signal
If x(t) © X(w) then x*(t) & X*(—w).

Property of conjugate symmetry

If x(t) is real then x*(t) = x(t) and therefore, from the property above we

see that X(w) = X*(—w) or X(—w) = X" (w).

We can write X (w) = A(w)e/9@),

o A(w), p(w) are the amplitude and phase spectrum respectively.
They are real functions.

o X' (w) =A(w)e 7@ and X*(—w) = A(—w)e /P(-®)

o Based on the last bullet point, for a real function we have:
X(w) =X"(—w) = A(w)e/?P@ = A(—w)e /P(-®) 5
» A(w) = A(—w) = for a real signal, the amplitude spectrum is even.
" ¢(w) = —¢p(—w) = forareal signal, the phase spectrum is odd.
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Time-frequency duality of Fourier transform

« Thereis a near symmetry between the forward and inverse Fourier
transforms.

 The same observation was valid for Laplace transform.

Forward FT

A

x(0) X(w)
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Duality property
¢ Ifx(t) © X(w) then X(t) © 2nx(—w)

Proof
From the definition of the inverse Fourier transform we get:

1 ® .
x(t) = —f X(w)e’?dw
21 ) _
Therefore,
2mx(—t) =j X(w)e 79tdw

Swapping t with w and using the definition of forward Fourier transform we
have:
X(t) © 2nx(—w)
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Duality property example

Consider the Fourier transform of a rectangular function

t(t) o i WwT
rec . Tsinc( 2)

x(#)

Tsinc(%t) & 21 rect (?) = 21 rect (2)

T

X(w)
; —
&
- N /'\v..
4SS 20\ 4m r— _% 0 % w —
T T T T



Imperial College

Scaling property

If x(t) & X(w) then for any real constant a the following property holds.

1 w
x(at) mX (E)

That Iis, compression of a signal in time results in spectral expansion and
vice versa. As mentioned, the extreme case is the Dirac function and an

everlasting constant function.

x(1)
1 X(w)

|
(S

) X()
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Time-shifting property with example

If x(t) & X(w) then the following property holds.
x(t —ty) © X(w) e /@t

4

E
Find the Fourier transform of the gate pulse x(t) given by rect (t . )

03T
Jo

By using the time-shifting property we get X (w) = tsinc(=)e
Observe the amplitude (even) and phase (odd) of the Fourier transform.
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Frequency-shifting property

If x(t) © X(w) then x(t)e/?! © X(w — wy). This property states that
multiplying a signal by e/®ot shifts the spectrum of the signal by w,.

In practice, frequency shifting (or amplitude modulation) is achieved by
multiplying x(t) by a sinusoid. This is because:

x(t) cos(wpt) = %[x(t)ej“’ot + x(t)e/@ot]

x(t) cos(wyt) & % [X(w — wy) + X(w + wy)]
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Frequency-shifting example

Find and sketch the Fourier transform of the signal x(t)cos10t where

t t .
x(t) = rect (Z) . We know that rect (Z) & 4sinc(2w)
x(1)
1

x(t) cos(10t) = %[x(t)ejmt + x(t)ze_jwt]2

x(t) cos(10t) & % [X(w—10) + X(w + 10)]
x(t) cos(10t) & 2 {sinc[2(w — 10)] + sinc[2(w + 10)]}

x(1) cos 10t

A
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Phase from (b), Amp. from (a) Phase from (a), Amp. from (b)
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Convolution properties

« Time and frequency convolution.
If x,(t) © X;(w) and x,(t) © X,(w), then
= x1(t) xx3(t) © X (w)Xz(w)

= 1 (Ox(8) © X1 () * X; ()
Let H(w) be the Fourier transform of the unit impulse response h(t), i.e.,
h(t) © H(w)

Applying the time-convolution property to y(t) = x(t) = h(t) we get:
Y(w) = X(w)H(w)

Therefore, the Fourier Transform of the system’s impulse response is the
system’s Frequency Response.



Imperial College

Frequency convolution example

* Find the spectrum of of the signal x(t)cos10t where x(t) = rect( ) .

t
4
*  We know that rect (2) & 4sinc(Zw).
x(1)

1

<>

=32 2 t—=

1/2

X
Wiy -

x(t) cos 10z

A=
TN
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Time difierentiation property

« Ifx(t) © X(w) then the following properties hold:
= Time differentiation property.

dx(t) .
s JwX(w)

= Time integration property.
[ x(@)dr o X2 4 1x(0)6(w)

jw

« Compare with the time differentiation property in the Laplace domain.
x(t) © X(s)

d);it) S sX(s) —x(07)
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Appendix: Proof of the time convolution property

By definition we have:

Flxs (6) * ()] = j

t
_ | [j x1(T)x,(t — 1)e /@tdt]dr
t=—0o0

Jr=—oo

) [joo x1(T)x, (t — T)dt]e /@tdt

(0.0) (0.0)

= Jr x4 (1) [j x,(t — 1)e J®tdt]dr
T=—00 t=—o0

= [ a@el[  x(t- et Da - e
T=—00 t

= =—00
(0]

:foo xl(r)e_j“”[j x,(v)e/9Vdv]dt
T=—00 t

=—00

— f::_oox1 (T)e_ijX1 (w)dt = X1 (w) f::_oox1(T)€_ijdT = X;(w) X3 (w)
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Fourier transtorm tahle 1

No. x(t) X(w)
1
1 e “u(r) - a>>0
a—+ jw
1
2 eu(—t) - a>»0
a— jw
i 2a
3 el R a>>0
1
4 te Y u(t a>0
¢ (@ + jw)?
n!
5 t"e "u(t) _ a>0
(ﬂ -+ ]Ct))”+1
5(1) 1
1 28 (w)
el @0t 2w 8(w — wp)
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Fourier transform tahle 2
No. x(t) X(w)
9 COs wyt m[§(w — wp) + (@ + wyp)]
10 sin wyt Jjr[8(w + wy) — 8(w — ay)]
1
11 u(t) né(w) + —
Jjw

2
12 sgnt e

Jw
13 cos wot u(t) 2 [8(@ — @0) + 8(@ + w0)] + —

2 wy — w*
14 sin woru() T 8@ — @) — 80 + 00)] + —

2j wy; — W*

. Wy
15 e %" sin wot u(t a> 0
W ( ) (ﬂ + ;-:u)2 +w§
_ a+jo

16 e~ cos wyt u(t) a=>0

(a + jw)* + w;
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Fourier transform tahle 3
No. x(t) X(w)
- a+ jo
16 e " cos wyt u(t a=>>0
ot #(6) (@ + jw)?* + o}
17 rect (i) T SINc (w_‘r)
T 2
W @
18 — sinc (Wt t(———)
= sinc (Wt) rec W
19 A (1) ¥ sinc? (‘”—r)
T 2 4
W Wt w
20 — sinc? [ — A (—)
o ( 2 ) oW
21 iﬁ(t—n?’) wgié(m—nwg) w0=2—n
T
n=-—00 n=—og
22 e~1*/20° o 2me ")
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Summary of Fourier transform operations 1

Operation x(1) X(w)
Scalar multiplication kx(t) kX (w)
Addition x1(t) + x2(t) X (w) + X, (w)
Conjugation x*(t) X*(—w)
Duality X(1) 2nx(—w)
Scaling (a real) x(at) ——1—- X ( 2)

la|  \a
Time shifting x(t — to) X (w)e /@0
Frequency shifting (w real) x(t)e/ ! X (w — wy)
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sSummary of Fourier transform operations 2

Operation x(1) X(w)
Time convolution x1(2) % x2(1) X (w) X (w)
1
Frequency convolution x1(2)xa(1) o X (w) * X5 (w)
Time differentiation ‘;; (Jw)"X (w)
i
Time integration / x(u)du Ef—@ + 17X (0)é(w)
&% 0



