

Signals and Systems

Lecture 8

DR TANIA STATHAKI

READER (ASSOCIATE PROFESSOR) IN SIGNAL PROCESSING IMPERIAL COLLEGE LONDON

Definition of Fourier transform

 The forward and inverse Fourier transform are defined for aperiodic signals as:

$$X(\omega) = \mathcal{F}[x(t)] = \int_{-\infty}^{\infty} x(t)e^{-j\omega t}dt$$

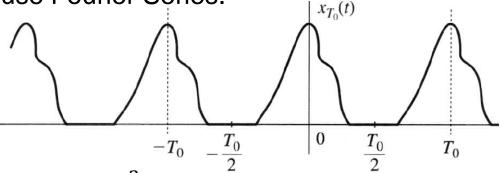
$$x(t) = \mathcal{F}^{-1}[X(\omega)] = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega)e^{j\omega t}d\omega$$

- You can immediately observe the functional similarity with Laplace transform.
- Note that for periodic signals we use Fourier Series.

$$x_{T_0}(t) = \sum_{n = -\infty} D_n e^{jn\omega_0 t}$$

$$D_n = \frac{1}{T_0} \int_{-T_0/2}^{T_0/2} x_{T_0}(t) e^{-jn\omega_0 t} dt$$
 or

$$D_n = \frac{1}{T_0} \int_{\text{one full period}} x_{T_0}(t) e^{-jn\omega_0 t} dt$$
 , $\omega_0 = \frac{2\pi}{T_0}$



Define three useful functions

• A unit rectangular window (also called a unit gate) function rect(x):

$$\operatorname{rect}(x) = \begin{cases} 0 & |x| > \frac{1}{2} \\ \frac{1}{2} & |x| = \frac{1}{2} \\ 1 & |x| < \frac{1}{2} \end{cases} \xrightarrow{1 \text{ rect } (x)} \xrightarrow{1 \text{ rect } (x)} \xrightarrow{1 \text{ rect } (x)} \xrightarrow{1 \text{ rect } (\frac{x}{\tau})}$$

• A unit triangle function $\Delta(x)$:

$$\Delta(x) = \begin{cases} 0 & |x| \ge \frac{1}{2} \\ 1 - 2|x| & |x| < \frac{1}{2} \end{cases} \xrightarrow{-\frac{\tau}{2}} 0 \xrightarrow{\frac{\tau}{2}} 0$$

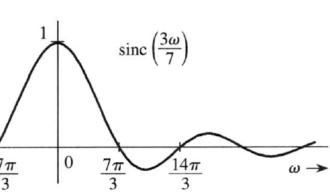
Interpolation function sinc(x):

$$\operatorname{sinc}(x) = \frac{\sin(x)}{x} \text{ or } \operatorname{sinc}(x) = \frac{\sin(\pi x)}{\pi x}$$

More about the sinc(x) function

- The sinc(x) function is an even function of x.
- $\operatorname{sinc}(x) = 0$ when $\operatorname{sin}(x) = 0$, i.e., $x = \pm \pi, \pm 2\pi, \pm 3\pi, \dots$ except when x = 0 where $\operatorname{sinc}(0) = 1$. This can be proven by the L'Hospital's rule.
- sinc(x) is the product of an oscillating signal sin(x) and a monotonically decreasing function 1/x.

Therefore, it is a damping oscillation with period 2π with amplitude decreasing as 1/x.



sinc(x)

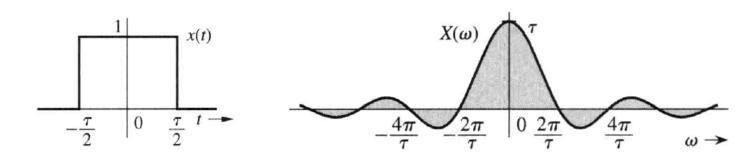
Fourier transform of $x(t) = \text{rect}(t/\tau)$

- Evaluation: $X(\omega) = \mathcal{F}[x(t)] = \int_{-\infty}^{\infty} \text{rect}\left(\frac{t}{\tau}\right) e^{-j\omega t} dt$
- Since $\operatorname{rect}\left(\frac{t}{\tau}\right) = 1$ for $\frac{-\tau}{2} < t < \frac{\tau}{2}$ and 0 otherwise, we have:

$$X(\omega) = \mathcal{F}[x(t)] = \int_{\frac{-\tau}{2}}^{\frac{\tau}{2}} e^{-j\omega t} dt = -\frac{1}{j\omega} \left(e^{-j\omega\frac{\tau}{2}} - e^{j\omega\frac{\tau}{2}} \right) = \frac{2\sin(\frac{\omega\tau}{2})}{\omega}$$

$$= \tau \frac{\sin(\frac{\omega\tau}{2})}{(\frac{\omega\tau}{2})} = \tau \operatorname{sinc}(\frac{\omega\tau}{2}) \Rightarrow \mathcal{F}\left[\operatorname{rect}\left(\frac{t}{\tau}\right)\right] = \tau \operatorname{sinc}(\frac{\omega\tau}{2}) \text{ or } \operatorname{rect}\left(\frac{t}{\tau}\right) \Leftrightarrow \tau \operatorname{sinc}(\frac{\omega\tau}{2})$$

- The bandwidth of the function $rect\left(\frac{t}{\tau}\right)$ is approximately $\frac{2\pi}{\tau}$.
- Observe that the wider (narrower) the pulse in time the narrower (wider) the lobes of the *sinc* function in frequency.



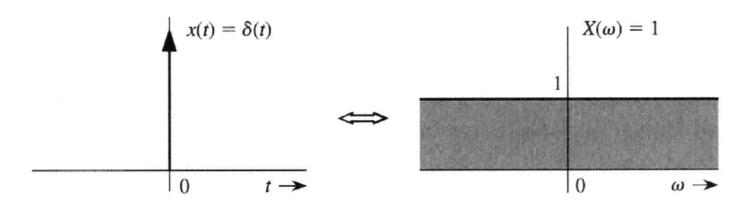
Fourier transform of the unit impulse $x(t) = \delta(t)$

Using the sampling property of the impulse we get:

$$X(\omega) = \mathcal{F}[\delta(t)] = \int_{-\infty}^{\infty} \delta(t)e^{-j\omega t}dt = 1$$

 As we see, the unit impulse contains all frequencies (or, alternatively, we can say that the unit impulse contains a component at every frequency.)

$$\delta(t) \Leftrightarrow 1$$



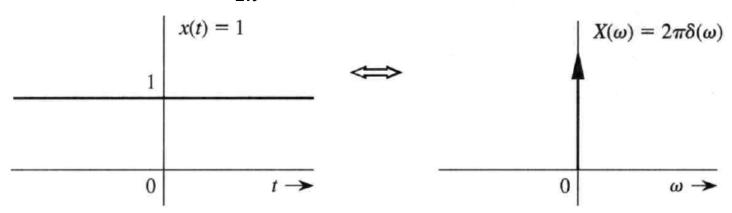
Inverse Fourier transform of $\delta(\omega)$

Using the sampling property of the impulse we get:

$$\mathcal{F}^{-1}[\delta(\omega)] = \frac{1}{2\pi} \int_{-\infty}^{\infty} \delta(\omega) e^{j\omega t} d\omega = \frac{1}{2\pi}$$

• Therefore, the spectrum of a constant signal x(t) = 1 is an impulse $2\pi\delta(\omega)$.

$$\frac{1}{2\pi} \Leftrightarrow \delta(\omega) \text{ or } 1 \Leftrightarrow 2\pi\delta(\omega)$$



- By looking at current and previous slide, observe the relationship: wide (narrow) in time, narrow (wide) in frequency.
 - Extreme case is a constant everlasting function in one domain and a Dirac in the other domain.

Inverse Fourier transform of $\delta(\omega-\omega_0)$

Using the sampling property of the impulse we get:

$$\mathcal{F}^{-1}[\delta(\omega-\omega_0)] = \frac{1}{2\pi} \int_{-\infty}^{\infty} \delta(\omega-\omega_0) e^{j\omega t} d\omega = \frac{1}{2\pi} e^{j\omega_0 t}$$

• The spectrum of an everlasting exponential $e^{j\omega_0t}$ is a single impulse located at $\omega=\omega_0$.

$$\frac{1}{2\pi}e^{j\omega_0 t} \Leftrightarrow \delta(\omega - \omega_0)$$

$$e^{j\omega_0 t} \Leftrightarrow 2\pi\delta(\omega - \omega_0)$$

$$e^{-j\omega_0 t} \Leftrightarrow 2\pi\delta(\omega + \omega_0)$$

Fourier transform of an everlasting sinusoid $\cos \omega_0 t$

Remember the Euler's formula:

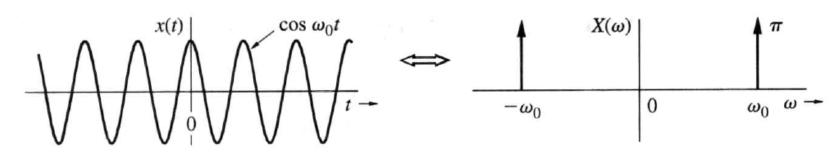
$$\cos \omega_0 t = \frac{1}{2} (e^{j\omega_0 t} + e^{-j\omega_0 t})$$

$$\mathcal{F}\{\cos \omega_0 t\} = \mathcal{F}\left\{\frac{1}{2} (e^{j\omega_0 t} + e^{-j\omega_0 t})\right\} = \frac{1}{2} \mathcal{F}\{e^{j\omega_0 t}\} + \frac{1}{2} \mathcal{F}\{e^{-j\omega_0 t}\}$$

Using the results from previous slides we get:

$$\cos \omega_0 t \Leftrightarrow \pi[\delta(\omega + \omega_0) + \delta(\omega - \omega_0)]$$

 The spectrum of a cosine signal has two impulses placed symmetrically at the frequency of the cosine and its negative.



Fourier transform of any periodic signal

• The Fourier series of a periodic signal x(t) with period T_0 is given by:

$$x(t) = \sum_{-\infty}^{\infty} D_n e^{jn\omega_0 t}, \, \omega_0 = \frac{2\pi}{T_0}$$

By taking the Fourier transform on both sides we get:

$$X(\omega) = 2\pi \sum_{n=-\infty}^{\infty} D_n \, \delta(\omega - n\omega_0)$$

Fourier transform of a unit impulse train

Consider an impulse train

$$\delta_{T_0}(t) = \sum_{-\infty}^{\infty} \delta (t - nT_0)$$

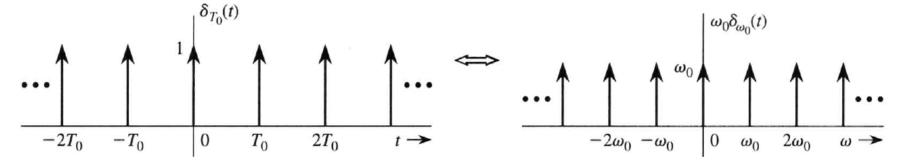
The Fourier series of this impulse train can be shown to be:

$$\delta_{T_0}(t) = \sum_{-\infty}^{\infty} D_n \, e^{jn\omega_0 t}$$
 where $\omega_0 = \frac{2\pi}{T_0}$ and $D_n = \frac{1}{T_0}$

• Therefore, using results from slide 8 we get:

$$X(\omega) = \mathcal{F}\{\delta_{T_0}(t)\} = \frac{1}{T_0} \sum_{-\infty}^{\infty} \mathcal{F}\{e^{jn\omega_0 t}\} = \frac{1}{T_0} \sum_{n=-\infty}^{\infty} 2\pi \delta(\omega - n\omega_0), \omega_0 = \frac{2\pi}{T_0}$$
$$X(\omega) = \omega_0 \sum_{n=-\infty}^{\infty} \delta(\omega - n\omega_0) = \omega_0 \delta_{\omega_0}(\omega)$$

- The Fourier transform of an impulse train in time (denoted by $\delta_{T_0}(t)$) is an impulse train in frequency (denoted by $\delta_{\omega_0}(\omega)$).
- The closer (further) the pulses in time the further (closer) in frequency.



Linearity and conjugate properties

Linearity

If
$$x_1(t) \Leftrightarrow X_1(\omega)$$
 and $x_2(t) \Leftrightarrow X_2(\omega)$, then $a_1x_1(t) + a_2x_2(t) \Leftrightarrow a_1X_1(\omega) + a_2X_2(\omega)$

Property of conjugate of a signal

If $x(t) \Leftrightarrow X(\omega)$ then $x^*(t) \Leftrightarrow X^*(-\omega)$.

Property of conjugate symmetry

If x(t) is real then $x^*(t) = x(t)$ and therefore, from the property above we see that $X(\omega) = X^*(-\omega)$ or $X(-\omega) = X^*(\omega)$.

We can write $X(\omega) = A(\omega)e^{j\phi(\omega)}$.

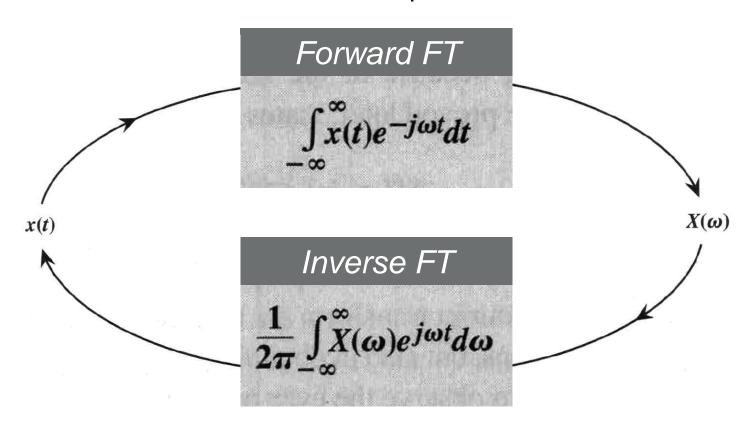
- o $A(\omega)$, $\phi(\omega)$ are the amplitude and phase spectrum respectively. They are real functions.
- $X^*(\omega) = A(\omega)e^{-j\phi(\omega)} \text{ and } X^*(-\omega) = A(-\omega)e^{-j\phi(-\omega)}$
- Based on the last bullet point, for a real function we have:

$$X(\omega) = X^*(-\omega) \Rightarrow A(\omega)e^{j\phi(\omega)} = A(-\omega)e^{-j\phi(-\omega)} \Rightarrow$$

- $A(\omega) = A(-\omega) \Rightarrow$ for a real signal, the amplitude spectrum is even.
- $\phi(\omega) = -\phi(-\omega) \Rightarrow$ for a real signal, the phase spectrum is odd.

Time-frequency duality of Fourier transform

- There is a near symmetry between the forward and inverse Fourier transforms.
- The same observation was valid for Laplace transform.



Duality property

• If $x(t) \Leftrightarrow X(\omega)$ then $X(t) \Leftrightarrow 2\pi x(-\omega)$

Proof

From the definition of the inverse Fourier transform we get:

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega) e^{j\omega t} d\omega$$

Therefore,

$$2\pi x(-t) = \int_{-\infty}^{\infty} X(\omega)e^{-j\omega t}d\omega$$

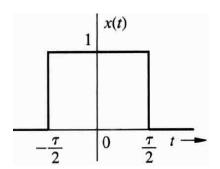
Swapping t with ω and using the definition of forward Fourier transform we have:

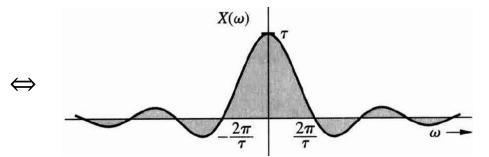
$$X(t) \Leftrightarrow 2\pi x(-\omega)$$

Duality property example

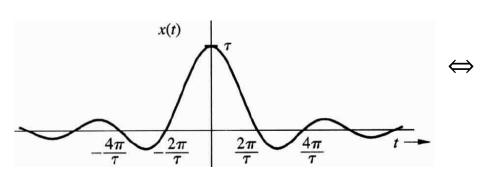
Consider the Fourier transform of a rectangular function

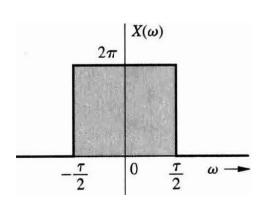
$$rect\left(\frac{t}{\tau}\right) \Leftrightarrow \tau sinc\left(\frac{\omega \tau}{2}\right)$$





$$\tau \operatorname{sinc}(\frac{\tau t}{2}) \Leftrightarrow 2\pi \operatorname{rect}(\frac{-\omega}{\tau}) = 2\pi \operatorname{rect}(\frac{\omega}{\tau})$$



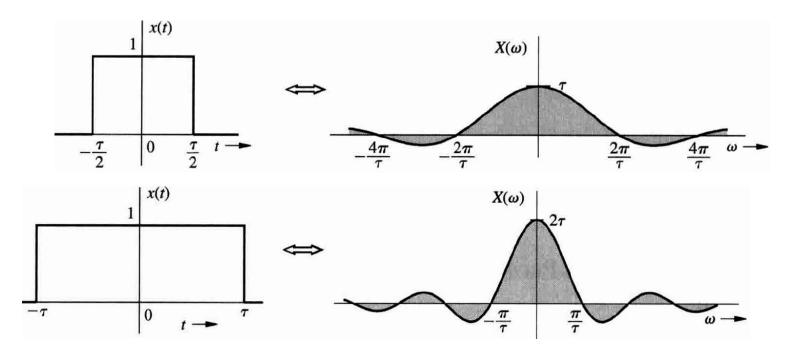


Scaling property

• If $x(t) \Leftrightarrow X(\omega)$ then for any real constant a the following property holds.

$$x(at) \Leftrightarrow \frac{1}{|a|} X\left(\frac{\omega}{a}\right)$$

 That is, compression of a signal in time results in spectral expansion and vice versa. As mentioned, the extreme case is the Dirac function and an everlasting constant function.

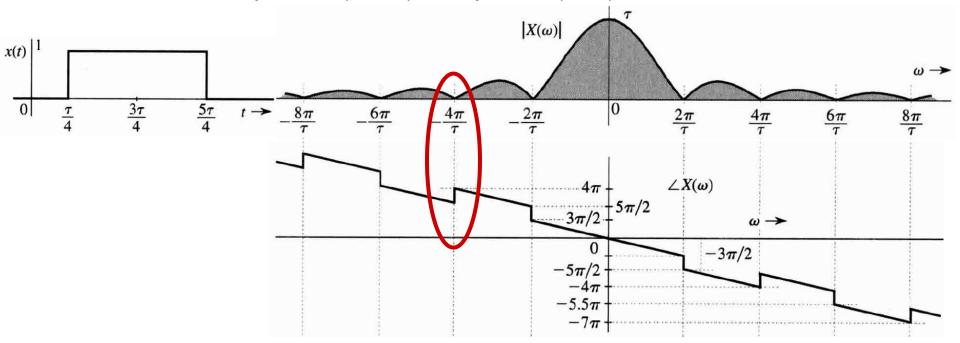


Time-shifting property with example

• If $x(t) \Leftrightarrow X(\omega)$ then the following property holds.

$$x(t-t_0) \Leftrightarrow X(\omega) e^{-j\omega t_0}$$

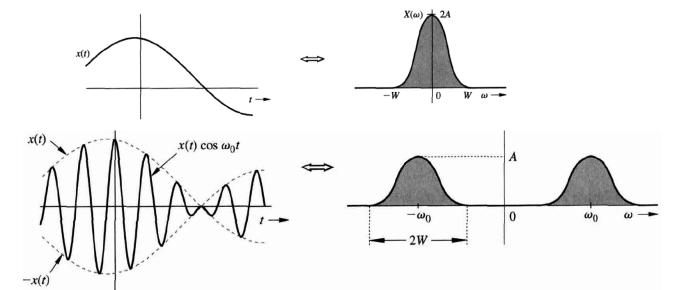
- Find the Fourier transform of the gate pulse x(t) given by $\text{rect}\left(\frac{t-\frac{3\tau}{4}}{\tau}\right)$.
- By using the time-shifting property we get $X(\omega) = \tau \operatorname{sinc}(\frac{\omega \tau}{2})e^{-j\omega \frac{3\tau}{4}}$.
- Observe the amplitude (even) and phase (odd) of the Fourier transform.



Frequency-shifting property

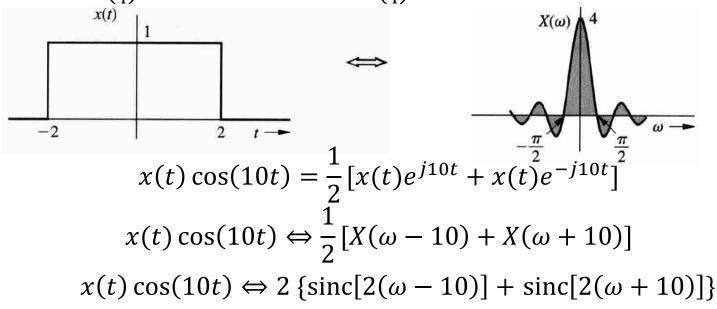
- If $x(t) \Leftrightarrow X(\omega)$ then $x(t)e^{j\omega_0t} \Leftrightarrow X(\omega-\omega_0)$. This property states that multiplying a signal by $e^{j\omega_0t}$ shifts the spectrum of the signal by ω_0 .
- In practice, frequency shifting (or amplitude modulation) is achieved by multiplying x(t) by a sinusoid. This is because:

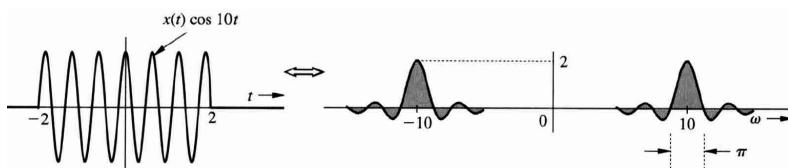
$$x(t)\cos(\omega_0 t) = \frac{1}{2} [x(t)e^{j\omega_0 t} + x(t)e^{-j\omega_0 t}]$$
$$x(t)\cos(\omega_0 t) \Leftrightarrow \frac{1}{2} [X(\omega - \omega_0) + X(\omega + \omega_0)]$$



Frequency-shifting example

• Find and sketch the Fourier transform of the signal $x(t)\cos 10t$ where $x(t) = \text{rect}\left(\frac{t}{4}\right)$. We know that $\text{rect}\left(\frac{t}{4}\right) \Leftrightarrow 4\text{sinc}(2\omega)$





Is the phase important?

Phase from (b), Amp. from (a)

Phase from (a), Amp. from (b)

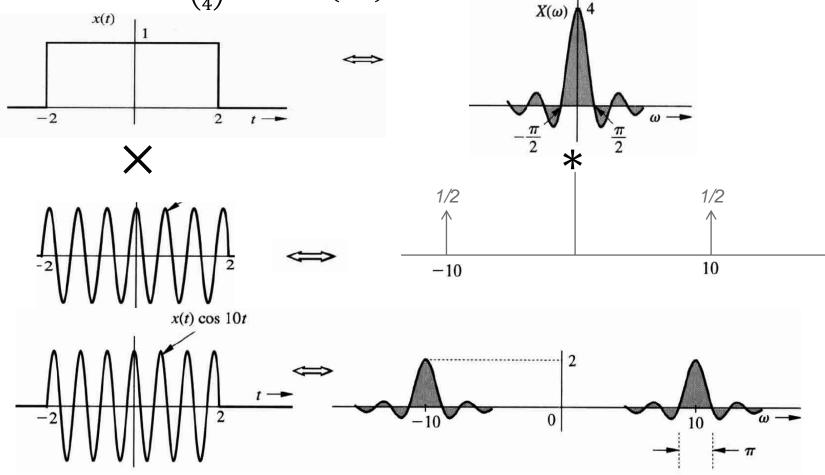
Convolution properties

- Time and frequency convolution.
 - If $x_1(t) \Leftrightarrow X_1(\omega)$ and $x_2(t) \Leftrightarrow X_2(\omega)$, then
 - $x_1(t) * x_2(t) \Leftrightarrow X_1(\omega)X_2(\omega)$
 - $x_1(t)x_2(t) \Leftrightarrow \frac{1}{2\pi}X_1(\omega) * X_2(\omega)$
- Let $H(\omega)$ be the Fourier transform of the unit impulse response h(t), i.e., $h(t) \Leftrightarrow H(\omega)$
- Applying the time-convolution property to y(t) = x(t) * h(t) we get: $Y(\omega) = X(\omega)H(\omega)$
- Therefore, the Fourier Transform of the system's impulse response is the system's Frequency Response.

Frequency convolution example

• Find the spectrum of of the signal $x(t)\cos 10t$ where $x(t) = \operatorname{rect}\left(\frac{t}{4}\right)$.

• We know that $rect\left(\frac{t}{4}\right) \Leftrightarrow 4sinc(2\omega)$.



Time differentiation property

- If $x(t) \Leftrightarrow X(\omega)$ then the following properties hold:
 - Time differentiation property.

$$\frac{dx(t)}{dt} \Leftrightarrow j\omega X(\omega)$$

Time integration property.

$$\int_{-\infty}^{t} x(\tau) d\tau \Leftrightarrow \frac{X(\omega)}{j\omega} + \pi X(0) \delta(\omega)$$

Compare with the time differentiation property in the Laplace domain.

$$\frac{x(t) \Leftrightarrow X(s)}{dt} \Leftrightarrow sX(s) - x(0^{-})$$

Appendix: Proof of the time convolution property

By definition we have:

$$\mathcal{F}[x_1(t) * x_2(t)] = \int_{t=-\infty}^{\infty} \left[\int_{\tau=-\infty}^{\infty} x_1(\tau) x_2(t-\tau) d\tau \right] e^{-j\omega t} dt$$

$$= \int_{\tau=-\infty}^{\infty} \left[\int_{t=-\infty}^{\infty} x_1(\tau) x_2(t-\tau) e^{-j\omega t} dt \right] d\tau$$

$$= \int_{\tau=-\infty}^{\infty} x_1(\tau) \left[\int_{t=-\infty}^{\infty} x_2(t-\tau) e^{-j\omega t} dt \right] d\tau$$

$$= \int_{\tau=-\infty}^{\infty} x_1(\tau) e^{-j\omega \tau} \left[\int_{t=-\infty}^{\infty} x_2(t-\tau) e^{-j\omega(t-\tau)} d(t-\tau) \right] d\tau$$

$$= \int_{\tau=-\infty}^{\infty} x_1(\tau) e^{-j\omega \tau} \left[\int_{t=-\infty}^{\infty} x_2(v) e^{-j\omega v} dv \right] d\tau$$

$$= \int_{\tau=-\infty}^{\infty} x_1(\tau) e^{-j\omega \tau} X_1(\omega) d\tau = X_1(\omega) \int_{\tau=-\infty}^{\infty} x_1(\tau) e^{-j\omega \tau} d\tau = X_1(\omega) X_2(\omega)$$

Imperial College London

Fourier transform table 1

No.	x(t)	$X(\omega)$	
1	$e^{-at}u(t)$	$\frac{1}{a+j\omega}$	<i>a</i> > 0
2	$e^{at}u(-t)$	$\frac{1}{a-j\omega}$	a > 0
3	$e^{-a t }$	$\frac{2a}{a^2+\omega^2}$	<i>a</i> > 0
4	$te^{-at}u(t)$	$\frac{1}{(a+j\omega)^2}$	<i>a</i> > 0
5	$t^n e^{-at} u(t)$	$\frac{n!}{(a+j\omega)^{n+1}}$	<i>a</i> > 0
6	$\delta(t)$	1	
7	1	$2\pi\delta(\omega)$	
8	$e^{j\omega_0 t}$	$2\pi\delta(\omega-\omega_0)$	

Imperial College London

Fourier transform table 2

No.	x(t)	$X(\omega)$	
9	$\cos \omega_0 t$	$\pi[\delta(\omega-\omega_0)+\delta(\omega+\omega_0)]$	
10	$\sin \omega_0 t$	$j\pi[\delta(\omega+\omega_0)-\delta(\omega-\omega_0)]$	
11	u(t)	$\pi\delta(\omega) + \frac{1}{j\omega}$	
12	sgn t	$\frac{2}{j\omega}$	
13	$\cos \omega_0 t u(t)$	$\frac{\pi}{2}[\delta(\omega-\omega_0)+\delta(\omega+\omega_0)]+\frac{j\omega}{\omega_0^2-\omega^2}$	
14	$\sin \omega_0 t u(t)$	$\frac{\pi}{2j}[\delta(\omega-\omega_0)-\delta(\omega+\omega_0)]+\frac{\omega_0}{\omega_0^2-\omega^2}$	
15	$e^{-at}\sin\omega_0tu(t)$	$\frac{\omega_0}{(a+j\omega)^2+\omega_0^2}$	<i>a</i> > 0
16	$e^{-at}\cos\omega_0 tu(t)$	$\frac{a+j\omega}{(a+j\omega)^2+\omega_0^2}$	<i>a</i> > 0

Imperial College London

Fourier transform table 3

No.	x(t)	$X(\omega)$	
16	$e^{-at}\cos\omega_0 tu(t)$	$\frac{a+j\omega}{(a+j\omega)^2+\omega_0^2}$	<i>a</i> > 0
17	$\operatorname{rect}\left(\frac{t}{\tau}\right)$	$\tau \operatorname{sinc}\left(\frac{\omega\tau}{2}\right)$	
18	$\frac{W}{\pi}$ sinc (Wt)	$\operatorname{rect}\left(\frac{\omega}{2W}\right)$	
19	$\Delta\left(\frac{t}{\tau}\right)$	$\frac{\tau}{2} \operatorname{sinc}^2 \left(\frac{\omega \tau}{4} \right)$	
20	$\frac{W}{2\pi}\operatorname{sinc}^2\left(\frac{Wt}{2}\right)$	$\Delta\left(\frac{\omega}{2W}\right)$	
21	$\sum_{n=-\infty}^{\infty} \delta(t - nT)$	$\omega_0 \sum_{n=-\infty}^{\infty} \delta(\omega - n\omega_0)$	$\omega_0 = \frac{2\pi}{T}$
22	$e^{-t^2/2\sigma^2}$	$\sigma\sqrt{2\pi}e^{-\sigma^2\omega^2/2}$	

Summary of Fourier transform operations 1

Operation	x(t)	$X(\omega)$
Scalar multiplication	kx(t)	$kX(\omega)$
Addition	$x_1(t) + x_2(t)$	$X_1(\omega) + X_2(\omega)$
Conjugation	$x^*(t)$	$X^*(-\omega)$
Duality	X(t)	$2\pi x(-\omega)$
Scaling (a real)	x(at)	$\frac{1}{ a }X\left(\frac{\omega}{a}\right)$
Time shifting	$x(t-t_0)$	$X(\omega)e^{-j\omega t_0}$
Frequency shifting (ω_0 real)	$x(t)e^{j\omega_0t}$	$X(\omega)e^{-j\omega t_0}$ $X(\omega-\omega_0)$

Summary of Fourier transform operations 2

Operation	x(t)	$X(\omega)$
Time convolution	$x_1(t) * x_2(t)$	$X_1(\omega)X_2(\omega)$
Frequency convolution	$x_1(t)x_2(t)$	$\frac{1}{2\pi}X_1(\omega)*X_2(\omega)$
Time differentiation	$\frac{d^nx}{dt^n}$	$(j\omega)^n X(\omega)$
Time integration	$\int_{-\infty}^t x(u)du$	$\frac{X(\omega)}{j\omega} + \pi X(0)\delta(\omega)$