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« The forward and inverse Fourier transform are defined for aperiodic
signals as: x(1)

X(w)=F[x@)] = joox(t)e‘j‘”tdt

x(t) =F X (w)] = %JOOX(a))ej“’tdw 0

 You can immediately observe the functional similarity with Laplace
transform.

 For periodic signals we use Fourier Series. x7,(8)

(00
= Y e

n=-—oco

— l To/2 —Jjnwgot
D, = - f—To/z xr, (t)e ofdt or

D, =-

— — —Jjnwgt —_ =
T, Jone full period XT, (t)e dt, wg T



Imperial College

A unit rectangular window (also called a unit gate) function rect(x):
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A unit triangle function A(x):
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Interpolation function sinc(x):
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More about the sinc(x) function

The sinc(x) function is an even function of x.
sinc(x) = 0 when sin(x) = 0, i.e.,

x = +m, +2m,+3m, ... except when x = 0
where sinc(0) = 1. This can be proven by the

L’Hospital’s rule. el

TN ) a3
sinc(x) is the product of an e W

oscillating signal sin(x) and a
monotonically decreasing function 1/x.
Therefore, it is a damping oscillation with period

(3w
27 with amplitude decreasing as 1/x. sine (7)
el l4r~N_AIm
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Fourier transformof x(t) = rect(t/7)

Evaluation:
«° t .
X(0) = Flx(t)] = j rect(;)e‘f‘”tdt

Since rect (%) — 1 for _77 <t< % and 0 otherwise we have:
T

_ T ZSin(%)
X(w) = Flx(®)] = j ef“’tdt——]—w(e o5 — e1o3) = 2

2

sin(=0) _ _ .
=T—r— = Tsmc(%) = F [rect G)] = Tsmc(%) or|rect G) = Tsmc(%)

=)
The bandwidth of the function rect (9 IS approximately 27”

Observe that the wider(narrower) the pulse in time the narrower(wider)
the lobes of the sinc function in frequency.
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Fourier transform of the unit impulse x(¢) = &(t)

« Using the sampling property of the impulse we get:

X(w) = F[5(8)] = j ~ s(OeIotdr = 1

« As we see the unit impulse contains all frequencies (or, alternatively, we
can say that the unit impulse contains a component at every frequency.)
S(t) =1

x x(1) = 8(1) X(w) =1
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Inverse Fourier transform of 5 (w)

Using the sampling property of the impulse we get:

FH8()] = [, 6(w)e/*tdw =

Therefore, the spectrum of a constant signal x(t) = 1 is an impulse 2n6(w).

% s §(w) or 1 © 2n8(w)

x(t) =1

1

2T

A

X(w) = 2md(w)

0

[ —>»

0

w —>»>

By looking at current and previous slide, observe the relationship: wide

(narrow) in time, narrow (wide) in frequency.

o Extreme case is a constant everlasting function in one domain and a
Dirac in the other domain.
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Inverse Fourier transform of 6 (w — w,)

« Using the sampling property of the impulse we get:

FHO(w — wo)] = 52 [, 8w — wo)e/“*dw = 5 e/t

« The spectrum of an everlasting exponential e/®ot is a single impulse
located at w = wy, .

%ej‘”ot & 6(w — wgp)

e/?l 28 (w — wq)
e 19! 218 (w + W)
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Fourier transform of an everlasting sinusoid coswt

« Remember the Euler’s formula:

1
cosw0t=§(ef“’0 + e/ %ot

F{coswot} =F {% (e/@ot + e‘j“)ot)} = % Fle/@ot} + %T{e‘j“)ot}

« Using the results from previous slides we get:
cos wot © m[d(w + wy) + 6 (w — wy)]

« The spectrum of a cosine signal has two impulses placed symmetrically
at the frequency of the cosine and its negative.

x(1)

r—-—

X(w)
1

— Wy

m—-—
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Fourier transform of any periodic signal

« The Fourier series of a periodic signal x(t) with period T, Is given by:

_ o0 mwot _2r
X() = XZoo Dy €770, wo = -

« By taking the Fourier transform on both sides we get:

X(w) =2m Z D, §(w — nwy)

n=-—co
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Consider an impulse train
51,(t) = £%% 6 (t = nTy)

The Fourier series of this impulse train can be shown to be:

81, (t) = X% Dy, /™ot where wy = fr—” and D,, = Ti
0 0
Therefore, using results from slide 8 we get:
0 0 0

X(w) = wo Xp=—o 6 (0 —nwy) = wq 5w0 (w)
The Fourier transform of an impulse train in time (denoted by 6, () is an
impulse train in frequency (denoted by §,, (w)) .

The closer (further) the pulses in time the further (closer) in freguency.
6.,-0(t)

AL Tttt

—2I, -T |0 Ty 2Ty A 2wy —wy |0 wy 2wy, >

Cl)()8 (f)
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Linearity and conjugate properties

Linearity
If x;(t) © X;(w) and x,(t) & X,(w), then
a1 x1(£)+azx;(t) © a1 X1 (w) + a X5 (w)

Property of conjugate of a signal
If x(t) © X(w) then x*(t) © X*(—w).

Property of conjugate symmetry

If x(t) is real then x*(t) = x(t) and therefore, from the property above we

see that X(w) = X*(—w) or X(—w) = X" (w).

We can write X (w) = A(w)e/9@),

o A(w), p(w) are the amplitude and phase spectrum respectively.
They are real functions.

o X' (w)=Aw)e /9@ and X*(—w) = A(—w)e /P(-®)

o Based on the last bullet point, for a real function we have:
X(w) =X"(—w) = A(w)e/?P@ = A(—w)e /P(-®) 5
» A(w) = A(—w) = for areal signal, the amplitude spectrum is even.
" ¢(w) = —¢p(—w) = for areal signal, the phase spectrum is odd.
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Time-frequency duality of Fourier transform

« There is a near symmetry between the forward and inverse Fourier
transforms.

« The same observation was valid for Laplace transform.

x(f) X(w)

Ve
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Duality property
¢ Ifx(t) © X(w) then X(t) © 2nx(—w)

Proof
From the definition of the inverse Fourier transform we get:

1 r® .
x(t) = —f X(w)e’?dw
2T ) _
Therefore,
2mx(—t) =f X(w)e 7°tdw

Swapping t with w and using the definition of forward Fourier transform we
have:
X)) © 2nx(—w)
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Duality property example

Consider the Fourier transform of a rectangular function

t(t) _ (wr)
rect|—| © tsinc(—
T 2

x(2)

1

@ 3
. .

1 o £ i T 2 - =
2 2

X(w)
x(1) 27
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Scaling property

If x(t) & X(w) then for any real constant a the following property holds.

1 w
x(at) mX (E)
That Iis, compression of a signal in time results in spectral expansion and
vice versa. As mentioned, the extreme case is the Dirac function and an

everlasting constant function.

x(1)
1 X(w)

|
(ST

X(?) X()
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Time-shifting property with example

If x(t) & X(w) then the following property holds.
x(t —ty) © X(w) e /@t

4

E
Find the Fourier transform of the gate pulse x(t) given by rect (t . )

03T
Joo

By using the time-shifting property we get X (w) = zsinc(--)e
Observe the amplitude (even) and phase (odd) of the Fourier transform.
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Frequency-shifting property

If x(t) © X(w) then x(t)e/?! © X(w — wy). This property states that
multiplying a signal by e/®ot shifts the spectrum of the signal by w,.

In practice, frequency shifting (or amplitude modulation) is achieved by
multiplying x(t) by a sinusoid. This is because:

x(t) cos(wpt) = %[x(t)ej“’ot + x(t)e/@ot]

x(t) cos(wyt) & % [X(w — wy) + X(w + wy)]
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Frequency-shifting example

Find and sketch the Fourier transform of the signal x(t)cos10t where

x(t) = rect G) . We know that rect G) & 4sinc(2w)
x(1)

1

x(t) cos(10t) = %[x(t)ejmt + x(t)ze_jlot]2

x(t) cos(10t) & % [X(w—10) + X(w + 10)]
x(t) cos(10t) & 2 {sinc[2(w — 10)] + sinc[2(w + 10)]}

x(1) cos 10z

AU
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Phase from (b), Amp. from (a) Phase from (a), Amp. from (b)
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Convolution properties

« Time and frequency convolution.
If x,(t) © X;(w) and x,(t) © X,(w), then
= x1(t) xx(t) © X (w)Xz(w)

= (D1t © X1 (w) * X; ()
Let H(w) be the Fourier transform of the unit impulse response h(t), i.e.,
h(t) © H(w)

Applying the time-convolution property to y(t) = x(t) * h(t) we get:
Y(w) = X(w)H(w)

Therefore, the Fourier Transform of the system’s impulse response is the
system’s Frequency Response.
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Frequency convolution example

* Find the spectrum of of the signal x(t)cos10t where x(t) = rect( ) .

t
4
« We know that rect (2) & 4sinc(2w).
x(1)
1

<>

= 2 t—=

1/2

X
Wi -

x(t) cos 10z

A==
VTN
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Time differentiation property

« Ifx(t) © X(w) then the following properties hold:
= Time differentiation property.

dx(t) .
e JwX(w)

= Time integration property.
[ x(@)dr o X2 4 1x(0)6(w)

jw

« Compare with the time differentiation property in the Laplace domain.
x(t) © X(s)

dZit) & sX(s) —x(07)
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Appendix: Proof of the time convolution property

By definition we have:

Flxs (6) * ()] = j

t

) [joo x1(T)x, (t — T)dt]e /@tdt

= JZ:O_OO[L:O_OOX1 (Dx, (t — T)e /@tdt]dt
— Jr x1 (1) [j x,(t — T)e /®tdt]dr
T=—00 t=—0o0
[ m@e [ (- et - nldr
T=—00 t=—0o0
= j xl(r)e‘f“"[J x,(v)e/9Vdv]drt
T=—00 t=—0o0

= f::_oox1 (T)e_ijX1 (w)dt = X1 (w) f::_oox1(T)€_jde = X;(w) X3 (w)



Imperial College

London

Fourier transtorm table 1

No. x(t) X(w)
1
1 e "u(r) : a>0
a-—+ jw
1
2 e’'u(—t) , a>0
a— jw
» 2a
3 el 1o a>0
1
4 te Y u(t a>0
e (a + jow)?
n!
5 t"e "u(t) _ a >0
(ﬂ -+ ]CU)”"'I
5() 1
1 26 (w)
el @0t 28 (w — wp)
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Fourier transform tahle 2
No. x(t) X(w)
9 COs wyt m[§(w — wy) + §(w + wyp)]
10 sin wyt Jjr[8(w + wy) — 8(w — ay)]
1
11 u(t) mé(w) + —
Jjw
2
12 sgnt e
jw
x :
13 cos wol u(t) Z[8(0 — @) + 8(@ + @)l + —— 3
2 wy; — w*
. T wy
14 sin wot u(t) —[8(w — wg) — (0 + wy)] + — -
2j Wy — W*
. Wy
15 e %' sin wot u(t a> 0
of u(8) (@+ jw)? + w}
_ a+ jo
16 e~ cos wyt u(t) a=>>0

(@ + jw)* + w;
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Fourier transform tahle 3

No. x(1) X(w)

N a+ jo
16 e " cos wot u(t a >0

o uld) (@ + jw)? +
17 rect (i) T sSinc (w_r)
T 2

W w
18 — sinc (Wt t(———)

= sinc (Wt) rec W

4

o () ()

W Wt @
20 — sinc® | — A (—)

o ( 2 ) W
21 iﬁ(t—ni’") wgiﬁ(m—nwg) w0=2—r

T

n=-—0Q n=—00

22 e~1°/20 o 2me " @ /2
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Summary of Fourier transform operations 1

Operation x(1) X(w)
Scalar multiplication kx(t) kX (w)
Addition x1 (1) + xa2(t) X (w) + X, (w)
Conjugation x*(1) X*(—w)
Duality X(1) 2nx(—w)
Scaling (a real) x(at) ._1_. X (2)

la| a
Time shifting x(t — ty) X (w)e/@0
Frequency shifting (w real) x(t)e/ ™! X(w — wp)
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Summary of Fourier transform operations 2

Operation x(1) X(w)
Time convolution x1(2) *xx,5(2) X (w) X2 (w)
Frequency convolution x1(2)xa(1) -2—1-; X (w) * X5 (w)
Time differentiation j: (Jw)"X (w)

X (w)

Time integration

f x(u)du

— +nX(0)é(w)
jw



