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• The forward and inverse Fourier transform are defined for aperiodic 

signals as:

𝑋 𝜔 = ℱ 𝑥 𝑡 = න
−∞

∞

𝑥 𝑡 𝑒−𝑗𝜔𝑡𝑑𝑡

𝑥 𝑡 = ℱ−1 𝑋 𝜔 =
1

2𝜋
න
−∞

∞

𝑋 𝜔 𝑒𝑗𝜔𝑡𝑑𝜔

• You can immediately observe the functional similarity with Laplace 

transform.

• For periodic signals we use Fourier Series.

𝑥𝑇0 𝑡 = ෍

𝑛=−∞

∞

𝐷𝑛𝑒
𝑗𝑛𝜔0𝑡

𝐷𝑛 =
1

𝑇0
𝑇0/2−׬
𝑇0/2 𝑥𝑇0 𝑡 𝑒−𝑗𝑛𝜔0𝑡𝑑𝑡 or

𝐷𝑛 =
1

𝑇0
one׬ full period𝑥𝑇0 𝑡 𝑒−𝑗𝑛𝜔0𝑡𝑑𝑡 , 𝜔0 =

2𝜋

𝑇0

Definition of Fourier transform



• A unit rectangular window (also called a unit gate) function rect 𝑥 :

rect 𝑥 =

0 𝑥 >
1

2
1

2
𝑥 =

1

2

1 𝑥 <
1

2

• A unit triangle function Δ 𝑥 :

Δ 𝑥 =
0 𝑥 ≥

1

2

1 − 2 𝑥 𝑥 <
1

2

• Interpolation function sinc(𝑥):

sinc(𝑥) =
sin(𝑥)

𝑥
or sinc(𝑥) =

sin(𝜋𝑥)

𝜋𝑥

Define three useful functions



• The sinc(𝑥) function is an even function of 𝑥.

• sinc 𝑥 = 0 when sin 𝑥 = 0, i.e.,

𝑥 = ±𝜋,±2𝜋,±3𝜋,… except when 𝑥 = 0

where sinc 0 = 1. This can be proven by the

L’Hospital’s rule.

• sinc(𝑥) is the product of an

oscillating signal sin(𝑥) and a

monotonically decreasing function 1/𝑥. 

Therefore, it is a damping oscillation with period

2𝜋 with amplitude decreasing as 1/𝑥.

More about the 𝐬𝐢𝐧𝐜(x) function



• Evaluation:

𝑋 𝜔 = ℱ 𝑥 𝑡 = න
−∞

∞

rect
𝑡

𝜏
𝑒−𝑗𝜔𝑡𝑑𝑡

• Since rect
𝑡

𝜏
= 1 for 

−𝜏

2
< 𝑡 <

𝜏

2
and 0 otherwise we have:

𝑋 𝜔 = ℱ 𝑥 𝑡 = න
−𝜏
2

𝜏
2
𝑒−𝑗𝜔𝑡𝑑𝑡 = −

1

𝑗𝜔
𝑒−𝑗𝜔

𝜏
2 − 𝑒𝑗𝜔

𝜏
2 =

2sin(
𝜔𝜏
2
)

𝜔

= 𝜏
sin(

𝜔𝜏

2
)

(
𝜔𝜏

2
)
= 𝜏sinc(

𝜔𝜏

2
) ⇒ ℱ rect

𝑡

𝜏
= 𝜏sinc(

𝜔𝜏

2
) or rect

𝑡

𝜏
⇔ 𝜏sinc(

𝜔𝜏

2
)

• The bandwidth of the function rect
𝑡

𝜏
is approximately 

2𝜋

𝜏
.

• Observe that the wider(narrower) the pulse in time the narrower(wider) 

the lobes of the sinc function in frequency.

Fourier transform of 𝒙 𝒕 = 𝐫𝐞𝐜𝐭(𝒕/𝝉)



• Using the sampling property of the impulse we get:

𝑋 𝜔 = ℱ 𝛿(𝑡) = න
−∞

∞

𝛿 𝑡 𝑒−𝑗𝜔𝑡𝑑𝑡 = 1

• As we see the unit impulse contains all frequencies (or, alternatively, we 

can say that the unit impulse contains a component at every frequency.)

𝛿 𝑡 ⇔ 1

Fourier transform of the unit impulse  𝒙 𝒕 = 𝜹(𝒕)



• Using the sampling property of the impulse we get:

ℱ−1 𝛿 𝜔 =
1

2𝜋
∞−׬
∞

𝛿 𝜔 𝑒𝑗𝜔𝑡𝑑𝜔 =
1

2𝜋

• Therefore, the spectrum of a constant signal 𝑥 𝑡 = 1 is an impulse 2𝜋𝛿 𝜔 .
1

2𝜋
⇔ 𝛿 𝜔 or 1 ⇔ 2𝜋𝛿 𝜔

• By looking at current and previous slide, observe the relationship: wide 

(narrow) in time, narrow (wide) in frequency.

o Extreme case is a constant everlasting function in one domain and a 

Dirac in the other domain.

Inverse Fourier transform of 𝜹(𝝎)



• Using the sampling property of the impulse we get:

ℱ−1 𝛿 𝜔 − 𝜔0 =
1

2𝜋
∞−׬
∞

𝛿 𝜔 − 𝜔0 𝑒𝑗𝜔𝑡𝑑𝜔 =
1

2𝜋
𝑒𝑗𝜔0𝑡

• The spectrum of an everlasting exponential 𝑒𝑗𝜔0𝑡 is a single impulse 

located at 𝜔 = 𝜔0 .
1

2𝜋
𝑒𝑗𝜔0𝑡 ⇔ 𝛿 𝜔 − 𝜔0

𝑒𝑗𝜔0𝑡 ⇔ 2𝜋𝛿 𝜔 − 𝜔0

𝑒−𝑗𝜔0𝑡 ⇔ 2𝜋𝛿 𝜔 + 𝜔0

Inverse Fourier transform of 𝜹(𝝎 −𝝎𝟎)



• Remember the Euler’s formula:

cos𝜔0𝑡 =
1

2
(𝑒𝑗𝜔0𝑡 + 𝑒−𝑗𝜔0𝑡)

ℱ cos𝜔0𝑡 = ℱ
1

2
(𝑒𝑗𝜔0𝑡 + 𝑒−𝑗𝜔0𝑡) =

1

2
ℱ 𝑒𝑗𝜔0𝑡 +

1

2
ℱ 𝑒−𝑗𝜔0𝑡

• Using the results from previous slides we get:

cos𝜔0𝑡 ⇔ 𝜋[𝛿 𝜔 + 𝜔0 + 𝛿 𝜔 − 𝜔0 ]

• The spectrum of a cosine signal has two impulses placed symmetrically 

at the frequency of the cosine and its negative.

Fourier transform of an everlasting sinusoid 𝐜𝐨𝐬𝝎𝟎𝒕



• The Fourier series of a periodic signal 𝑥(𝑡) with period 𝑇0 is given by:

𝑥 𝑡 = σ−∞
∞ 𝐷𝑛 𝑒

𝑗𝑛𝜔0𝑡, 𝜔0 =
2𝜋

𝑇0

• By taking the Fourier transform on both sides we get:

𝑋(𝜔) = 2𝜋 ෍

𝑛=−∞

∞

𝐷𝑛 𝛿 𝜔 − 𝑛𝜔0

Fourier transform of any periodic signal



• Consider an impulse train

𝛿𝑇0 𝑡 = σ−∞
∞ 𝛿 𝑡 − 𝑛𝑇0

• The Fourier series of this impulse train can be shown to be:

𝛿𝑇0 𝑡 = σ−∞
∞ 𝐷𝑛 𝑒

𝑗𝑛𝜔0𝑡 where 𝜔0 =
2𝜋

𝑇0
and 𝐷𝑛 =

1

𝑇0

• Therefore, using results from slide 8 we get:

𝑋 𝜔 = ℱ 𝛿𝑇0 𝑡 =
1

𝑇0
σ−∞
∞ ℱ{𝑒𝑗𝑛𝜔0𝑡} =

1

𝑇0
σ𝑛=−∞
∞ 2𝜋𝛿 𝜔 − 𝑛𝜔0 , 𝜔0 =

2𝜋

𝑇0

𝑋 𝜔 = 𝜔0σ𝑛=−∞
∞ 𝛿 𝜔 − 𝑛𝜔0 = 𝜔0 𝛿𝜔0

𝜔

• The Fourier transform of an impulse train in time (denoted by 𝛿𝑇0 𝑡 ) is an 

impulse train in frequency (denoted by 𝛿𝜔0
𝜔 ) .

• The closer (further) the pulses in time the further (closer) in frequency.

Fourier transform of a unit impulse train



Linearity and conjugate properties

• Linearity

If 𝑥1(𝑡) ⇔ 𝑋1 𝜔 and 𝑥2(𝑡) ⇔ 𝑋2 𝜔 , then

𝑎1𝑥1 𝑡 +𝑎2𝑥2 𝑡 ⇔ 𝑎1𝑋1 𝜔 + 𝑎2𝑋2 𝜔

• Property of conjugate of a signal

If 𝑥(𝑡) ⇔ 𝑋 𝜔 then 𝑥∗(𝑡) ⇔ 𝑋∗ −𝜔 .

• Property of conjugate symmetry

If 𝑥 𝑡 is real then 𝑥∗ 𝑡 = 𝑥(𝑡) and therefore, from the property above we 

see that 𝑋 𝜔 = 𝑋∗ −𝜔 or 𝑋(−𝜔) = 𝑋∗ 𝜔 .
We can write 𝑋 𝜔 = 𝐴 𝜔 𝑒𝑗𝜙(𝜔).
o 𝐴 𝜔 , 𝜙(𝜔) are the amplitude and phase spectrum respectively.

They are real functions.

o 𝑋∗ 𝜔 = 𝐴 𝜔 𝑒−𝑗𝜙(𝜔) and 𝑋∗ −𝜔 = 𝐴 −𝜔 𝑒−𝑗𝜙(−𝜔)

o Based on the last bullet point, for a real function we have:

𝑋 𝜔 = 𝑋∗ −𝜔 ⇒ 𝐴 𝜔 𝑒𝑗𝜙(𝜔) = 𝐴 −𝜔 𝑒−𝑗𝜙(−𝜔) ⇒
▪ 𝐴 𝜔 = 𝐴 −𝜔 ⇒ for a real signal, the amplitude spectrum is even.
▪ 𝜙 𝜔 = −𝜙(−𝜔) ⇒ for a real signal, the phase spectrum is odd.



Time-frequency duality of Fourier transform

• There is a near symmetry between the forward and inverse Fourier 

transforms.

• The same observation was valid for Laplace transform.

Forward FT

Inverse FT



Duality property

• If 𝑥(𝑡) ⇔ 𝑋 𝜔 then 𝑋(𝑡) ⇔ 2𝜋𝑥 −𝜔

Proof

From the definition of the inverse Fourier transform we get:

𝑥 𝑡 =
1

2𝜋
න
−∞

∞

𝑋 𝜔 𝑒𝑗𝜔𝑡𝑑𝜔

Therefore,

2𝜋𝑥 −𝑡 = න
−∞

∞

𝑋 𝜔 𝑒−𝑗𝜔𝑡𝑑𝜔

Swapping 𝑡 with 𝜔 and using the definition of forward Fourier transform we 

have:

𝑋(𝑡) ⇔ 2𝜋𝑥 −𝜔



• Consider the Fourier transform of a rectangular function

rect
𝑡

𝜏
⇔ 𝜏sinc(

𝜔𝜏

2
)

⇔

𝜏sinc(
𝜏𝑡

2
) ⇔ 2𝜋 rect

−𝜔

𝜏
= 2𝜋 rect

𝜔

𝜏

⇔

Duality property example



Scaling property

• If 𝑥(𝑡) ⇔ 𝑋 𝜔 then for any real constant 𝑎 the following property holds.

𝑥(𝑎𝑡) ⇔
1

𝑎
𝑋

𝜔

𝑎

• That is, compression of a signal in time results in spectral expansion and

vice versa. As mentioned, the extreme case is the Dirac function and an

everlasting constant function.



Time-shifting property with example

• If 𝑥(𝑡) ⇔ 𝑋 𝜔 then the following property holds.

𝑥(𝑡 − 𝑡0) ⇔ 𝑋 𝜔 𝑒−𝑗𝜔𝑡0

• Find the Fourier transform of the gate pulse 𝑥(𝑡) given by rect
𝑡−

3𝜏

4

𝜏
.

• By using the time-shifting property we get 𝑋 ω = 𝜏sinc(
𝜔𝜏

2
)𝑒−𝑗𝜔

3𝜏

4 .

• Observe the amplitude (even) and phase (odd) of the Fourier transform.



Frequency-shifting property

• If 𝑥(𝑡) ⇔ 𝑋 𝜔 then 𝑥(𝑡)𝑒𝑗𝜔0𝑡 ⇔ 𝑋 𝜔 −𝜔0 . This property states that

multiplying a signal by 𝑒𝑗𝜔0𝑡 shifts the spectrum of the signal by 𝜔0.

• In practice, frequency shifting (or amplitude modulation) is achieved by

multiplying 𝑥(𝑡) by a sinusoid. This is because:

𝑥 𝑡 cos 𝜔0𝑡 =
1

2
[𝑥(𝑡)𝑒𝑗𝜔0𝑡 + 𝑥(𝑡)𝑒−𝑗𝜔0𝑡]

𝑥(𝑡) cos 𝜔0𝑡 ⇔
1

2
[𝑋 𝜔 − 𝜔0 + 𝑋 𝜔 + 𝜔0 ]



• Find and sketch the Fourier transform of the signal 𝑥 𝑡 cos10𝑡 where 

𝑥 𝑡 = rect
𝑡

4
. We know that rect

𝑡

4
⇔ 4sinc(2𝜔)

𝑥 𝑡 cos 10𝑡 =
1

2
[𝑥(𝑡)𝑒𝑗10𝑡 + 𝑥(𝑡)𝑒−𝑗10𝑡]

𝑥(𝑡) cos 10𝑡 ⇔
1

2
[𝑋 𝜔 − 10 + 𝑋 𝜔 + 10 ]

𝑥 𝑡 cos 10𝑡 ⇔ 2 {sinc 2 𝜔 − 10 + sinc 2 𝜔 + 10 }

Frequency-shifting example



Is the phase important?

Phase from (b), Amp. from (a) Phase from (a), Amp. from (b)

(a) (b)



Convolution properties

• Time and frequency convolution.

If 𝑥1(𝑡) ⇔ 𝑋1 𝜔 and 𝑥2(𝑡) ⇔ 𝑋2 𝜔 , then

▪ 𝑥1 𝑡 ∗ 𝑥2 𝑡 ⇔ 𝑋1 𝜔 𝑋2 𝜔

▪ 𝑥1 𝑡 𝑥2 𝑡 ⇔
1

2𝜋
𝑋1 𝜔 ∗ 𝑋2 𝜔

• Let 𝐻(𝜔) be the Fourier transform of the unit impulse response ℎ(𝑡), i.e.,

ℎ(𝑡) ⇔ 𝐻 𝜔

• Applying the time-convolution property to 𝑦 𝑡 = 𝑥(𝑡) ∗ ℎ(𝑡) we get:

𝑌 𝜔 = 𝑋 𝜔 𝐻 𝜔

• Therefore, the Fourier Transform of the system’s impulse response is the 
system’s Frequency Response.



Frequency convolution example

• Find the spectrum of of the signal 𝑥 𝑡 cos10𝑡 where 𝑥 𝑡 = rect
𝑡

4
.

• We know that rect
𝑡

4
⇔ 4sinc(2𝜔).

× ∗
1/21/2



Time differentiation property

• If 𝑥(𝑡) ⇔ 𝑋 𝜔 then the following properties hold:

▪ Time differentiation property.
𝑑𝑥(𝑡)

𝑑𝑡
⇔ 𝑗𝜔𝑋(𝜔)

▪ Time integration property.

∞−׬
𝑡

𝑥 𝜏 𝑑𝜏 ⇔
𝑋(𝜔)

𝑗𝜔
+ 𝜋𝑋(0)𝛿(𝜔)

• Compare with the time differentiation property in the Laplace domain.

𝑥(𝑡) ⇔ 𝑋 𝑠
𝑑𝑥 𝑡

𝑑𝑡
⇔ 𝑠𝑋 𝑠 − 𝑥(0−)



Appendix: Proof of the time convolution property

• By definition we have:

ℱ 𝑥1 𝑡 ∗ 𝑥2 𝑡 = න
𝑡=−∞

∞

[න
𝜏=−∞

∞

𝑥1 𝜏 𝑥2 𝑡 − 𝜏 𝑑𝜏]𝑒−𝑗𝜔𝑡𝑑𝑡

= න
𝜏=−∞

∞

[න
𝑡=−∞

∞

𝑥1 𝜏 𝑥2 𝑡 − 𝜏 𝑒−𝑗𝜔𝑡𝑑𝑡]𝑑𝜏

= න
𝜏=−∞

∞

𝑥1 𝜏 [න
𝑡=−∞

∞

𝑥2 𝑡 − 𝜏 𝑒−𝑗𝜔𝑡𝑑𝑡]𝑑𝜏

= න
𝜏=−∞

∞

𝑥1 𝜏 𝑒−𝑗𝜔𝜏[න
𝑡=−∞

∞

𝑥2 𝑡 − 𝜏 𝑒−𝑗𝜔 𝑡−𝜏 𝑑(𝑡 − 𝜏)]𝑑𝜏

= න
𝜏=−∞

∞

𝑥1 𝜏 𝑒−𝑗𝜔𝜏[න
𝑡=−∞

∞

𝑥2 𝑣 𝑒−𝑗𝜔𝑣𝑑𝑣]𝑑𝜏

= ∞−=𝜏׬
∞

𝑥1 𝜏 𝑒−𝑗𝜔𝜏𝑋1 𝜔 𝑑𝜏 = 𝑋1 𝜔 ∞−=𝜏׬
∞

𝑥1 𝜏 𝑒−𝑗𝜔𝜏𝑑𝜏 = 𝑋1 𝜔 𝑋2 𝜔



Fourier transform table 1



Fourier transform table 2



Fourier transform table 3



Summary of Fourier transform operations 1



Summary of Fourier transform operations 2


