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Laplace Transform

Laplace Transform is the dual (or complement) of the time-domain analysis for
analysing signals and systems.

In time-domain analysis of an LTI system, we break the input x(t) into a sum of
impulse-like components and add the system’s response to all these
components.

In frequency-domain analysis, we break the Iinput x(t) into exponential
components of the form et where s is the complex frequency:
Ss=a+jw

The Laplace Transform is the tool to map signal and system behaviours from the
time-domain into the frequency domain.

The Laplace Transform is a generalisation of the Fourier Transform.

Time-domain x(t) L X(s) Frequency-domain |Y (S) L y(t)
X(t)mm  analysis == y(t) > analysis —
h(t) H(s)
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Laplace Transform

For a signal x(t) the two-sided Laplace transform is defined by

X(s) = f x(t)e Stdt
The signal x(t) is said to be the inverse Laplace transform of X(s). It can be shown
that
c+jT

1
t) = — li X(s)estd
x(t) T lim (s)e°tds
c—jT
where the integration is done along the vertical line Re{s} = ¢ in the complex plane
such that c is greater than the real part of all singularities of X(s) and X(s) is

bounded on the line, for example if contour path is in the region of convergence.

If all singularities are in the left half-plane, or X(s) is an entire function, then ¢ can
be set to zero and the above inverse integral formula becomes identical to
the inverse Fourier transform.

In practice, computing the complex integral can be done by using the so-called
Cauchy residue theorem.
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Laplace Transform

For the purpose of 2nd year curriculum, we assume that we mainly use
the Laplace transform in the case of causal sighals (one-sided Laplace
transform). In the case of a causal signal the Laplace Transform will be

defined as:

(0]

X(s) = L{x()} = j x(t)e Stdt

0

Furthermore, to accommodate special type of functions, as for example
the Dirac function, we sometimes use the definition:

(0]

X(s) = L{x()} = j x(t)e Stdt

0-

Note that the Laplace transform is a linear transform, i.e.,
L{kyxq(t) + kaxa ()} = ke L{x1 ()} + ky L{x,(t)}
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Examples: Laplace transforms of Dirac and unit step function

* Find the Laplace transform of the Dirac function §(t).

(0]

X(s)=L{@)} = j S(e Stdt =e 5% =1
o

* Find the Laplace transform of the unit step function u(t).
X(s) = Lu®)} = [T u®estdt = [ e stdt = —e 5|3 =

1

=) = ()] == (0-1) =+

S

= Note that in order to have e~ = 0 the real part of s must be positive,
l.e., Re{s} > 0.

= The above condition implies that the Laplace transform of a function
might exist for certain values of s and not all values of s. The set of
these values consists the so-called Region-of-Convergence (ROC) of
the Laplace transform.
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Find the Laplace transform of the causal function x(t) = e%tu(t).

X(s) = L{x(t)}

= je“tu(t)e‘“dt=jeate‘“dt= J e~ (S—Dtge = ! e~ (s-a)t
—00 0 0 _(S_a) 0

_(S a) (e—(s a)- oo) (e—(s a): O) (0 _ 1) — _a

—(S a)

= Note that in order to have e==9® = ( the real part of s —a must
be positive, i.e., Re{s — a} > 0 = Re{s} > Re{a}.
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Example: Laplace transform of a non-causal exponential function

Find now the Laplace transform of the anti-causal function x(t) =
—e %y (—t).

X(s) = L{x(t)}

(0]

0 0
= j—e“tu(—t)e‘“dt = j—e“te_“dt = — fe‘(s_a)tdt

— 00

=_(;fa)e—<s—a)t|° = L [(e=G=®0) — (g=G-ar(-))]

S )

() — (V)] = - 0) = 1

(s—a) s—a

= Note that in order to have e~ ® = ( the real part of s — a must be
negative, i.e., Re{s — a} < 0 = Re{s} < Re{a}.
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Two functions with same Laplace transform but different ROCS

In the two previous slides we proved that the following two functions:
= x(t) = e®u(t)

= x(t) = —e%u(—t)

have the same Laplace transform but entirely different ROCs.

This verifies that the transform function alone is not sufficient to describe
the function in the Laplace domain.

If you are given that the Laplace transform of a function is i can you
tell which is the function in time? (Answer: NO)

If you are given that the Laplace transform of a causal (or non-causal)
function is ﬁ can you tell which is the function in time? (Answer: YES)

What is the union of the ROCs of the above two functions? (Answer:
s —plane)
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Summary of previous slides

Please look carefully and assimilate the material presented in
previous slides.

It is clearly shown that two different functions have exactly the same
Laplace transform as far as the analytical expression of the transform
IS concerned.

What makes the two transforms different is the Region-of-
Convergence (ROC) of the two transforms.

The two ROCs are complementary and their union comprises the
entire s —plane.
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Find the Laplace transform of the function
x(t) = cos(wot)u(t) = %(ej“’ot+e‘j“’0t)u(t).

(0 @) (0 0) (0.0)

jej“)otu(t)e"“dt= j elwWoto=Stgt = j e~ (57jwoltgr = —— ¢~ (S7Jwo)t|
—(s —jwo) 0
—00 0 0
-1 ~(s—jwo)©) _ (p=(5—jw)0)] = —1 1) = —1
meapsilG ) - (e )l = T 0= D = Gy Rels} > 0
r . r . r . 1 . «
j e—]wotu(t)e—stdt — J e Jwoto—=st ¢ — j e—(s+]w0)tdt — : e—(s+]w0)t|
_(S +](1)0) 0
—00 0 0
-1 —(s+jw)- ) _ ((p—(s+jwo)0)] = 1 1) = —2>
meeilC %) = (e VN = o 0 D = ey Rels} > 0
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Example: Laplace transform of causal cosine function cont.

« Based on the previous analysis we have:
x(t) = cos(wot)u(t) = %(ejw0t+e_j“’0t)u(t).

S

1 1 1
L0} =3 |+ o) = ma Rels} >0

jwog) s?+wg
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Summary of some important Laplace transform pairs

No x(t) X(s)
1 5(t) 1
2 u(t) 1

S
3 tu(t) 1
SZ
4 t™u(t) n!

Sn+1
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Example: Inverse Laplace transform of ratios of polynomials

Find the inverse Laplace transform of ==
By factorising the denominator we get s2 —s — 6 = (s — 3)(s + 2).
75—6 75—6 A B

Therefore we can write;

A+B=72A—-3B=-6
A=3,B=4

Finally, ——— = = + —
y; s2—s—6 s—-3  s+2°

?—5—6 (s=3)(s+2) ~ 53 + s+2°

We saw that the Laplace transforms of both e®u(t) and —e*u(—t) are ﬁ with
different ROCs.

Therefore, the inverse Laplace transform of % IS
= 3e3ty(t) with Re{s} > 3 or

= —3e3ty(—t) with Re{s} < 3

Similarly, the inverse Laplace transform of % IS
= 4e~2ty(t) with Re{s} > —2 or

= —4e 2ty (—t) with Re{s} < —2



Imperial College

Example: Inverse Laplace transform of ratios of polynomials cont.

75—6 3 4
We found the Laplace Transform —— = .
§4—5—6 s—3 s+2

. 3 .
 The inverse Laplace transform of s

= 3e3ty(t) with Re{s} > 3 or
= —3e3ty(—t) with Re{s} < 3

. 4 .
 The inverse Laplace transform of 3 'S

= 4e~2ty(t) with Re{s} > —2 or
= —4e 2ty (—t) with Re{s} < —2
 We have 4 possible combinations for the function in time.

= Function 1: 3e3tu(t) + 4e~2'u(t) ROC: Re{s} > 3 N Re{s} > —2 = Re{s} > 3
Function 1 is causal but increases continuously with positive time.

= Function 2: 3e3tu(t) — 4e ?'u(—t) ROC: Re{s} >3 NRe{s} < -2=0
Function 2 is not an option.

= Function 3: —3e3tu(—t) + 4e~%*u(t) ROC: Re{s} < 3 N Re{s} > -2
Function 3 is non-causal but does not possess convergence problems.

= Function 4: —3e3tu(—t) — 4e %*u(—t) ROC: Re{s} < 3 N Re{s} < —2 = Re{s} < -2
Function 4 is anti-causal and increases continuously with negative time.
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Example: Inverse Laplace transiorm of ratios of polynomials cont.

2
Find the inverse Laplace transform of ( 2% _ The function in time is causal.

s+1)(s+2)

We observe that the power of the numerator is the same as the power of the
denominator. In that case the partial fraction expression is different. We basically
have to add the coefficient of the highest power of the numerator to it.

« Therefore, we can write: _2%45 + 4 4 B
(s+1)(s+2) s+1  s+2
6+A+B=0
4+2A+B =5
A=7,B=-13
- s2+5 7 13
F|na”y, m =2 +m_ E

» The inverse Laplace transform of s-I-Ll is 7etu(t) with Re{s} > —1.

« The inverse Laplace transform of 3 is —13e~2tu(t) with Re{s} > —2.

 The inverse Laplace transform of 2 is 26 (t).
- The total inverse Laplace transform is 25(t) + (7e~¢ —13e 2)u(t),Re{s} > —1
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Time-shifting property of the Laplace transform

Remember that in this course we mainly deal with causal signals.

Consider a causal signal x(t) with Laplace transform X(s). Suppose that
we delay x(t) by t, units of time to obtain x(t — t,) with t, = 0. The new
signal will have Laplace transform

oo

X(s) =L{x(t—ty)} = f x(t — tg)e Stdt
0

Lett — t, = v. In that case dt = dv and

L{x(t —ty)} = j x(v)e S@WHto)dy = e~Sto f x(v)e SVdv
—to _tO

oo

= e‘“of x(v)e SVdv = e 5t X(s)
0

Observe that delaying a signal introduces only an exponential component in
the new Laplace transform which becomes just a phase component if s = jw.
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Consider the signal x(t) shown below. This can be broken into signals x;(t)
and x, (t).

x(1) x(2) x5(1)

e

o 1 2 3 4 t-— oy 1 2 t—= 0 2 4 t—e

X)) =t —Dult—1) —u(t—2)] and x,(t) = u(t — 2) —u(t — 4).
Therefore,

x)=x ) +x,) =t —-Dult—1)—ult—-2)]+ult—2) —u(t—4) or
x)=t—-—Dut—1)—({t—-2)u(t—2) —u(t—4)

L{tu(t)} = Slz, L{(t—-—Du(t—1)} = e—s L L{(t = u(t — 2)} = e—zssi2

s2’

L) = = = Llu(e - 4) = e

1 1 1
X(s) = e S——— =25 _ 2 p—4s
( ) sz 52 S
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Frequency shifting property

Consider the signal x(t) with Laplace transform X(s). What is the signal
that corresponds to the Laplace transform X (s — sy)? By definition, this
should be

c+jT c+jT
— f X(s —sp)estds = = j X (s — sg)eSotes=soltdg
21j 0 21j 0
c—JjT c—jT
c+jT
= o j X(s — sp)eSotes=s0)td(s — s)
c—jT
c+jT
= gSot oz f X(s — sg)e®=%0)td(s — s,)
c—JT

Ifwesets —so=vthen(s=cx+jT=>v=cxjT — sy)

- 1 Cc—So+jT
L HX(s —s9)} = esotgjfc_soo_ﬁ X(w)etdv = eSotx(t) or

L{e5tx(t)} = X(s — sp)
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Application of frequency shifting property

s+a
(s+a)?+b?’

S
s2+b?

« Recall the frequency shifting property L{e%otx(t)} = X(s — sp).
« Using the shifting property with s, = —a we have that if

L{cos(bt)u(t)} =

« Given that L{cos(bt)u(t)} =

show L{e % cos(bt)u(t)} =

S
s24+p2

L{e" % cos(bt)u(t)} =

then

s+a
(s+a)2+b2
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Time-differentiation property

Given that L{x(t)} = X(s) show L {d’;(tt)} =sX(s) —x(07)

L{dx(t)} _ J dx(t) sty

dt dt

0-

Partial integration states that: ff udv = uv|h — f; vdu.

Using partial integration with u = e ™5t = du = —se ™ Stdt and v = x(t) = dv = d’;it) dt
we have:
dx(t o
d(t ) e Stdt = j e Std(x(t)) = e‘Stx(t)|O_ — j x(t)(—s)e Stdt =
0~ 0~ 0~

oo

[e5%x(c0) —e™50 x(07)] +s j x(t)e Stdt

e
The first term in the brackets goes to zero (as long as x(t) doesn’t grow faster than
an exponential which is a condition for the existence of the transform). Therefore,

LB} _ oW sty gm0 (07) 45 [ x(D)etdt = sK(5) — x(07).
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Time-differentiation property cont.

 Repeated application of the differentiation property yields the Laplace
transform of the higher order derivatives of a signal.

L {dzx“)} = s[sX(s) — x(07)] = %(07) = s2X(s) — sx(07) — %(0~)

dt?
L{d’;’;ﬁ”} = s"X(s) = s 1x(07) = s 2%(07) — - — x(™D (07)
with x@ (07) = 20
at’ lt=0~
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Differentiation in frequency

« Let us now take the derivative of the Laplace transform:

co

X(s) = L{x(t)} = f x(t)e Stdt

0

dX(s) _ (o —st _ B —st
== J, Ox(®)e~tdt = — [ tx(t)e tdt

 From the above we see that:

L)} = — 29

ds
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Find the Laplace transform of the signal x(t) using time differentiation and time
shifting properties.

x(1)

2

dx

dt

0]

,
dx

N
: 1. Ya

THO = §(t) - 38(t — 2) +25(¢ — 3)
L{EEO) = 18 (6) - 38(t — 2) +26(¢ — 3)}

=1—3e725 + 2e738
2
L {w} = $2X(s) — sx(07) — %(07) =

dt?
s?X(s) —0—0=5s%X(s)
Therefore,

s?X(s)=1—-3e %5 +2e 3 >
X(s) = Siz (1 —3e725 4+ 2e739)
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Time- and frequency- integration property and scaling property

If L{x(t)} = X(s) the following properties hold.

Time-integration property.

L {joox(r)dr} = X(s)

S

The dual property of time-integration is the frequency-integration

property.
L{@} =L X(z)dz

Scaling property.
L{x(at)} = 1X >
( ) a (Cl)

The above shows that time compression of a signal by a factor a causes
expansion of its Laplace transform in s by the same factor.
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Time-convolution and frequency-convolution properties

If L{x,(t)} = X,(s) and L{x,(t)} = X,(s) the following properties hold.

Time-convolution property.

L{x1 (1) * x2(0)} = X1(5) Xo(s)
As seen, convolution in time domain is equivalent to multiplication in
Laplace domain.

Freguency-convolution property.
L (D20} = 5= X1(5) * X3 ()

As seen, convolution in Laplace domain is equivalent to multiplication
In time domain weighted by the complex scalar 27;.
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Problem
Determine the convolution c(t) = e*u(t) * e’*u(t) .

Solution
We use the Laplace transformS'
L{e%u(t)} = —— and L{ePtu(t)} = - b)
at bt _ 1
Therefore, L{e®u(t) = e u(t)} = o)
1 1 1 1
We see that =D~ D) [S_a — S_b].

Therefore, £71 {(S_a)l(s_b)} = L1 {(aib) [Sia B sib]} - (aib)
_ 1 1
L ' {s—a - S—b} =

c(t) = e®u(t) * eltu(t) = (a 5 (e —ePHu(t)
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« If h(t) is the impulse response of an LTI system, then we have seen in
previous lectures that the system’s response to an input x(t) is x(t) *

h(t).

« Assuming causality and that L{h(t)} = H(s) and L{x(t)} = X(s) then the
Laplace transform of the output of the system is:
Y(s) = X(s)H(s)

« The response y(t) is the zero-state response of the LTI system to the
input x(t). The transfer function of the system H(s) is defined as:
Y(s) L{zero-state response}

X(s) L{input}

H(s) =



Imperial College

The everlasting exponential eso*

Suppose that the input to an LTI system is an everlasting exponential
eSot which starts at t = —oo.

If h(t) is the unit impulse response of an LTI system then:

y(&) = h(t) * e%t = [° h(r)e®Ddr = ¢St [°° h(r)e S0Tdr =
e H(sp)

Therefore, y(t) = eStH(s,) where H(sy) is the Laplace transform of
h(t) evaluated at s,.

What we proved above is the very important result that the output of an
LTI system to a single everlasting exponential is the same as the input
multiplied by the constant H(s,).
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London
Summary of Laplace transform properties
x(t) X(s)
Addition x1(t) + x2(1) X, (s) + Xa(s)
Scalar multiplication kx (1) kX(s)
d
Time differentiation d—): sX(s)—x(07)
s 3 ,
f s X(s) —sx(07) —x(07)
dt*
de 3 . . . - e
ey s°X(s)—s5x(07) —sx(07) —%(07)
d”, n
_Y S”X(S) - an—kx(k—l)(o—)
dr" k=1
’ 1
Time integration / xtzide - X (5)
0~ S
{ 1 1 0~
/ x(t)drt —X(s)—l——/ x(t)dt
—0C § § —00
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summary of Laplace transform properties cont.

x(t)

X(s)

Time shifting

Frequency shifting

Frequency
differentiation

Frequency integration

Scaling

Time convolution
Frequency convolution
Initial value

Final value

.\'(l‘ == f())u(f =S f())

x(t)e™
—tx (1)

XAT)

f
x(at),a >0

x1 (1) * x2(2)
x1(t)x2(2)
x(07)

x(00)

X (s)e™0 o >0
X (s — 5p)
dX(s)

ds

/A X(2)dz
()
=¥l =

a a

X, (s)Xa(s)

1
— X1 (s) * X(s)
2w j

lim s X (s) (n > m)

§—00

l_in(l) sX(s) [poles of s X (s) in LHP]
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Problem: How to find the initial and final values of a function x(t) (t - 0" and t - o)
if we know its Laplace Transform X(s) and do not want to compute the inverse?

 Initial Value Theorem
tlir(§1+x(t) = x(0%) = lim sX(s), x(t) must be bounded on (0, ).
- §—00

Conditions

= Laplace transforms of x(t) and L must exist.

= The power of the numerator of X(s) IS less than the power of its denominator.

 Final Value Theorem
tlim x(t) = x(o0) = lir% sX(s), x(t) must be bounded on (0, x).
—00 S—

Conditions

= Laplace transforms of x(t) and & must exist.

= The poles of sX(s) are all on the Ieft plane or origin.
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Initial and final value theorems: Exampie

« Example: Find the initial and final values of y(t) if Y(s) is given by:
Y(s) = 10(2s + 3)
> - s(s2+2s+5)

 |nitial Value

N _ 10(2s+3) .. 10(2s+3) _
y(O ) hm SY(S) S]l_)IE) s(s%2+2s5+5) T 55 (s2+2s+5) -

« Final Value

10(2s+3) .. 10(2s+3)
y(oo) - hm SY(S) B 1-1_138 s(s%2+2s5+5) 550 (s2+2s5+5) B
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* Recall the time-differentiation property of the Laplace transform:

d™x(t
L{ dt7(1 )} = s"X(s) —s" 1x(07) = s 2%(07) — .- — x(*D (07)
«  We exploit the above in order to solve differential equations as algebraic
equations!

time-domain

analysis:
X(t) = solve differential = y()
equations
X (s) frequency-domain Y (s)
X(t)-L > analysis: £1 -y (1)

solve algebraic

equations
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Laplace transform for solving differential equations: Example

 Problem: Solve the following second-order linear differential equation:
d’y(t)  _dy(®) dx(t)
dt? dt Y dt
given that y(07) = 2,y(07) = 1 and input x(t) = e~ *tu(t).

Time Domain Laplace (Frequency) Domain

dy(t) sY(s) —y(07) = sY(s) — 2
dt
d*y(t) s2Y(s) —sy(07) = y(07) = s?Y(s) — 25 — 1
dt?
x(t) = e *u(t) 1
X(s) = s+ 4
dx(t) $X(s) —x(07) = —— — 0 = —>

dt s+ 4 s+ 4
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Example cont.
Time Domain Laplace (Frequency) Domain
d?y(t dy(t s?Y(s) —2s — 1) + 5(sY(s) — 2) + 6Y(s
y()+5 y()+6y(t) (s*Y(s) S) 1( (s) —2) (s)
dt? dt _ n
_dx(t) ; s+4 s+4
T dt +x(t) = (s +55+6)Y(s) — (25 +11)
_S+1
s+4
s+1
(SZ + 55 + 6)Y(S) = S+—4 + (ZS + 11)
s+ 1+25%+8s+11s + 44
B s+ 4
—252+208+45=>y()
B s+ 4 >
257 +20s +45
B (s+2)(s+3)(s+4)
13 3 13/2 3 3/2
() = (—e~2t — 3e73t — Zp~4)y (¢ V(s) = B _
Y (2 2 u®) (s) s+2 s+3 s+4
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Let us think where the terms in the previous example come from.

d’y(t) | .dy(t) dx(t)
1r2 + S—dt + 6y(t) = I + x(t)
The output can be written as:
2s +11 s+1
Y(s) =

2455416 (s+4)(s%+55+6)

N 7
hd v

zero-input component zero-state component

Notice that the zero-input component of the response occurs due to the initial
conditions and the zero-state component occurs due to the input itself.

2 2
Y = — + + —
() <5+2 S+3) s+2 s+3 s+4

1 3
y(t) = (7e %t — 57 3Yu(t) + (_Ee_Zt + 2e73t — Ee“”)u(t)

- >y N
Vo N~

zero-input response zero-state response
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Laplace transform and transfer function

Let x(t) be the input of a LTI system. If h(t) is the impulse response of
the system then we proved previously that the output of the system y(t)
IS given by:

y(t) = x(t) * h(t)

It can be proven that L{x(t) * h(t)} = X(s)H(s). Therefore,
Y(s) = L{y(0)} = L{x(t) » h(£)} = X(s)H(s) =

H(s) = “) ) with H(s) = L{h(D)}

The Laplace transform of the impulse response of a system is called
the transfer function of the system.

Knowing the transfer function of a system we can fully determine the
behaviour of the system.
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Transier function examples

X(t) y(®) =x({-T)
0 Py Delay by T sec ) g
X (5) 0 Y(s)=X(s)e™*'
H (S) :Y(S) “ (S) pl
x(t) y(t) = dx/dt
{ e— Differentiator d /dt —_—
X(s) 5 Y(s) = sX (s)
H(s)=s
X(t) y(t) = _x(r)dr
s s  |ntegrator P @
X ()
Y(s)== X (s)
1 S

H(S)—S

shifting
property

differentiation
property

integration
property
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Initial conditions in systems (1]

In circuits, initial conditions may not be zero. For example, RNRIRE 7 hale
capacitors may be charged; inductors may have an initial
current. b

How should these be represented in the Laplace (frequency) e
domain? >

Consider a capacitor € with an initial voltage v(07). The

equation i(t) = C d’;(tt) holds. I(s)

C e~ vl

Now take Laplace transform on both sides e ]
I(s) =C(sV(s) — v(07)). ™

: 1 v(07) .
Rearrange the above to give V(s) = =1 (s) + - e ] 2

voltage across T - -—]

charged capacitor
voltage across effect of the

capacitor with  initial charge =
no charge voltage source
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Initial conditions in systems (2)

Similarly, consider an inductor L with an initial current i(07).
The equation v(t) = L d;(tt) holds.
Now take Laplace transform on both sides

V(s) =L(sI(s) —i(07)) =LsI(s) — Li(07)
A

voltage across
inductor with no
initial current

voltage across
inductor

effect of the
initial current
= voltage
source

i(?)

V(1) L

I(s)

Ls

Vis)

Li(07)



