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• Zero-state response assumes that the system is in “rest” state, i.e. all 

internal system variables are zero. 

• Deriving and understanding the zero-state response relies on knowing 

the so called unit impulse response ℎ 𝑡 . 

• Definition: The unit impulse response ℎ 𝑡  is the system’s response 

when the input is the Dirac function, i.e., 𝑥 𝑡 = 𝛿(𝑡), with all the initial 

conditions being zero at 𝑡 = 0−. 

• Any input 𝑥 𝑡  can be broken into a sequence of narrow rectangular 

pulses. Each pulse produces a system response. 

• If a system is linear and time invariant, 

the system’s response to 𝑥(𝑡) is the sum of its 

responses to all narrow pulse components. 

• ℎ(𝑡) is the system’s response to the rectangular 

pulse at 𝑡 = 0 as the pulse width approaches zero. 

 

The importance of impulse response 



• Given that a system is specified by the following differential equation, 

determine its unit impulse response ℎ 𝑡 . 

(𝐷𝑁 + 𝑎1𝐷
𝑁−1 +⋯+ 𝑎𝑁−1𝐷 + 𝑎𝑁)𝑦 𝑡  

=  (𝑏𝑁−𝑀𝐷
𝑀 + 𝑏𝑁−𝑀+1𝐷

𝑀−1 +⋯+ 𝑏𝑁−1𝐷 + 𝑏𝑁)𝑥 𝑡 , 𝑀 ≤ 𝑁 
 

• Remember the general equation of a system: 

𝑄 𝐷 𝑦 𝑡 = 𝑃 𝐷 𝑥(𝑡) 
 

• It can be shown (proof is out of the scope of this course) that the 

impulse response ℎ(𝑡) is given by 

ℎ 𝑡 = 𝑃 𝐷 𝑦𝑛 𝑡 𝑢(𝑡) 

 where 𝑢(𝑡) is the unit step function. But what is 𝑦𝑛 𝑡 ? 

 

How to determine the unit impulse response 𝒉(𝒕) ? 



• 𝑦𝑛 𝑡  is the solution to the homogeneous differential equation (what we 

called 𝑦0 𝑡  in the previous lecture) 

𝑄 𝐷 𝑦𝑛 𝑡 = 0 

with the following initial conditions: 

𝑦𝑛 0 = 𝑦 𝑛 0 = 𝑦 𝑛 0 = ⋯ = 𝑦𝑛
𝑁−2

0 = 0, 𝑦𝑛
𝑁−1

0 = 1 
 

• We use 𝑦𝑛 𝑡  instead of 𝑦0 𝑡  to associate 𝑦𝑛 𝑡  with the specific set of 

initial conditions mentioned above. 
 

• Remember that 𝑦𝑛 𝑡  is a linear combination of the characteristic modes 

of the system. 

𝑦𝑛 𝑡 = 𝑐1𝑒
𝜆1𝑡 + 𝑐2𝑒

𝜆2𝑡 +⋯+ 𝑐𝑁𝑒
𝜆𝑁𝑡 

 

• The constants 𝑐𝑖 are determined from the initial conditions. 
 

• Note that 𝑦𝑛
𝑘
(0) is the 𝑘th derivative of 𝑦𝑛 𝑡  at 𝑡 = 0. 

 

How to determine the unit impulse response 𝒉(𝒕) ? 



• Determine the impulse response for the system: 

𝐷2 + 3𝐷 + 2 𝑦 𝑡 = 𝐷𝑥(𝑡) 
 

• This is a second-order system (i.e., 𝑁 = 2, 𝑀 = 1 ) and the 

characteristic polynomial is: 

𝜆2 + 3𝜆 + 2 = 𝜆 + 1 𝜆 + 2  
 

• The characteristic roots are 𝜆1 = −1 and 𝜆2 = −2.  
 

• Therefore, 𝑦𝑛 𝑡 = 𝑐1𝑒
−𝑡 + 𝑐2𝑒

−2𝑡. 
 

• Differentiating the above equation yields 𝑦 𝑛 𝑡 = −𝑐1𝑒
−𝑡 − 2𝑐2𝑒

−2𝑡. 
 

• The initial conditions are 𝑦 𝑛 0 = 1 and 𝑦𝑛 0 = 0. 

 

 

Example 



• Setting 𝑡 = 0 and substituting the initial conditions yields: 

0 = 𝑐1 + 𝑐2 

1 = −𝑐1 − 2𝑐2 

• The solution of the above set of equations is: 

𝑐1 = 1 

𝑐2 = −1 

• Therefore, we obtain:  

𝑦𝑛 𝑡 = 𝑒−𝑡 − 𝑒−2𝑡 

• Remember that ℎ(𝑡) is given by: 

ℎ 𝑡 = 𝑃 𝐷 𝑦𝑛 𝑡 𝑢 𝑡  

with 𝑃 𝐷 = 𝐷 in this case. 

• Therefore: 

ℎ 𝑡 = 𝑃 𝐷 𝑦𝑛 𝑡 𝑢 𝑡 = (−𝑒−𝑡+2𝑒−2𝑡)𝑢 𝑡  

[Note that: 𝑃 𝐷 𝑦𝑛 𝑡 = 𝐷 𝑡 𝑦𝑛 𝑡 = 𝑦 𝑛 𝑡 = −𝑒−𝑡 + 2𝑒−2𝑡] 

 

 

 

Example cont. 



• Consider a Linear Time-Invariant system with impulse response ℎ(𝑡). 

• The output at time 𝑡 due to a shifted impulse with amplitude 𝑎 located 

at time instant 𝜏 is the impulse amplitude 𝑎  multiplied by a shifted 

impulse response located at 𝜏 as well. 

• In other words: 

𝛿 𝑡 → ℎ 𝑡  

𝑎𝛿 𝑡 → 𝑎ℎ 𝑡  

𝑎𝛿 𝑡 − 𝜏 → 𝑎ℎ 𝑡 − 𝜏  

• If we generalize the above observation we can say that the output of a 

linear system to an input 𝑥 𝑡 =  𝑎𝑖𝛿(𝑡 − 𝜏𝑖)
𝑛
𝑖=1  is 

𝑦 𝑡 = 𝑎𝑖ℎ(𝑡 − 𝜏𝑖)

𝑛

𝑖=1

. 

LTI 

System 

𝑥(𝑡) 𝑦(𝑡) 

Zero-state response 



• We now consider how to determine the system’s 

response 𝑦(𝑡) to any input 𝑥(𝑡) when the system 

is in the zero state (initial conditions are zero). 

• Define a pulse 𝑝Δ𝜏(𝑡) of height equal to 1 and 

width Δ𝜏 starting at 𝑡 = 0 (see top figure on the 

right). 

• Any input 𝑥(𝑡) can be approximated by a sum of 

narrow and shifted rectangular pulses. 

• The pulse starting at 𝑡 = 𝑛Δ𝜏 has a height 𝑥(𝑛Δ𝜏). 

It can be expressed as 𝑥 𝑛Δ𝜏 𝑝Δ𝜏 𝑡 − 𝑛Δ𝜏 . 

• Therefore, 𝑥(𝑡) is approximated by the sum of all 

such pulses as follows: 

𝑥 𝑡 = lim
Δ𝜏→0

 𝑥 𝑛Δ𝜏 𝑝Δ𝜏 𝑡 − 𝑛Δ𝜏𝑛  or 

𝑥 𝑡 = lim
Δ𝜏→0

 Δ𝜏
𝑥 𝑛Δ𝜏

Δ𝜏
𝑝Δ𝜏 𝑡 − 𝑛Δ𝜏

𝑛

 

 

 

 

 

Zero-state response cont. 

𝑝Δ𝜏 𝑡  



• The term 
𝑥 𝑛Δ𝜏

Δ𝜏
𝑝Δ𝜏 𝑡 − 𝑛Δ𝜏   represents a pulse 𝑝 𝑡 − 𝑛Δ𝜏  with height 

𝑥 𝑛Δ𝜏

Δ𝜏
. 

• As Δ𝜏 → 0, the height of the pulse → ∞ 

and the width of the pulse → 0  

but the area remains 𝑥 𝑛Δ𝜏  and 

𝑥 𝑛Δ𝜏

Δ𝜏
𝑝Δ𝜏 𝑡 − 𝑛Δ𝜏 → 𝑥 𝑛Δ𝜏 𝛿 𝑡 − 𝑛Δ𝜏 . 

Therefore, 

𝑥 𝑡 = lim
Δ𝜏→0

 
𝑥 𝑛Δ𝜏

Δ𝜏
Δ𝜏𝑝Δ𝜏 𝑡 − 𝑛Δ𝜏

𝑛

 

𝑥 𝑡 = lim
Δ𝜏→0

 𝑥 𝑛Δ𝜏 Δ𝜏𝛿 𝑡 − 𝑛Δ𝜏

𝑛

 

 

Zero-state response cont. 



• Given the relationship 𝑥 𝑡 = lim
Δ𝜏→0

 𝑥 𝑛Δ𝜏 Δ𝜏𝛿 𝑡 − 𝑛Δ𝜏𝑛  and the fact that 

the system is linear, time-invariant, we have: 

 

𝛿(𝑡) ⇒ ℎ(𝑡) 

 

 

 

𝛿 𝑡 − 𝑛Δ𝜏 ⇒ ℎ 𝑡 − 𝑛Δ𝜏  

 

 

 

 

[𝑥(𝑛Δ𝜏)Δ𝜏]𝛿(𝑡 − 𝑛Δ𝜏) ⇒ [𝑥(𝑛Δ𝜏)Δ𝜏]ℎ(𝑡 − 𝑛Δ𝜏) 

 

 

 

 

Zero-state response cont. 



• Based on the previous analysis, the input-output relationship of an LTI 

system as a function of the impulse response is shown below. 

lim
Δ𝜏→0

 𝑥 𝑛Δ𝜏 Δ𝜏𝛿 𝑡 − 𝑛Δ𝜏 ⇒𝑛  lim
Δ𝜏→0

 𝑥 𝑛Δ𝜏 Δ𝜏ℎ 𝑡 − 𝑛Δ𝜏𝑛  

lim
Δ𝜏→0

 𝑥 𝑛Δ𝜏 𝛿 𝑡 − 𝑛Δ𝜏 Δ𝜏 ⇒𝑛  lim
Δ𝜏→0

 𝑥 𝑛Δ𝜏 ℎ 𝑡 − 𝑛Δ𝜏 Δ𝜏𝑛  

Zero-state response cont. 



• Therefore, 

𝑦 𝑡 = lim
Δ𝜏→0

 𝑥 𝑛Δ𝜏 ℎ 𝑡 − 𝑛Δ𝜏 Δ𝜏 =  𝑥 𝜏 ℎ 𝑡 − 𝜏 𝑑𝜏
∞

−∞𝑛

 

 

• Knowing ℎ(𝑡), we can determine the response 𝑦(𝑡) to any input 𝑥(𝑡). 

• Observe the all-pervasive nature of the system’s characteristic modes, 

which determines the impulse response of the system. 

 

 

• 𝑥(𝑡)                                            𝑦 𝑡 =  𝑥 𝜏 ℎ 𝑡 − 𝜏 𝑑𝜏
∞

−∞
 

LTI System 

ℎ(𝑡) 

Zero-state response cont. 



• The previously derived integral equation occurs frequently in physical 

sciences, engineering and mathematics. 
 

• It is given the name the convolution integral. 
 

• The convolution integral (known simply as convolution) of two functions 

𝑥1(𝑡) and 𝑥2(𝑡) is denoted symbolically as 𝑥1(𝑡) ∗ 𝑥2 (𝑡).  
 

• This is defined as 

𝑥1 𝑡 ∗ 𝑥2 𝑡 =  𝑥1 𝜏 𝑥2 𝑡 − 𝜏 𝑑𝜏
∞

−∞
 

 

 

The convolution integral 



• Commutative property: The order of operands does not matter. 

𝑥1 𝑡 ∗ 𝑥2 𝑡 =  𝑥1 𝜏 𝑥2 𝑡 − 𝜏 𝑑𝜏
∞

−∞
=  𝑥1 𝑡 − 𝜏 𝑥2 𝜏 𝑑𝜏

∞

−∞
 

Let 𝑧 = 𝑡 − 𝜏. In that case 𝜏 = 𝑡 − 𝑧 and 𝑑𝜏 = −𝑑𝑧 and 𝜏 → ±∞ ⇒ 𝑧 → + ∞. 

Therefore,  

𝑥1 𝑡 ∗ 𝑥2 𝑡 =  𝑥1 𝜏 𝑥2 𝑡 − 𝜏 𝑑𝜏
∞

−∞
=  𝑥1 𝑡 − 𝑧 𝑥2 𝑧 (−𝑑𝑧

−∞

∞
) 

= − 𝑥1 𝑡 − 𝑧 𝑥2 𝑧 𝑑𝑧 =  𝑥1 𝑡 − 𝑧 𝑥2 𝑧 𝑑𝑧 = 𝑥2 𝑡 ∗ 𝑥1 𝑡
∞

−∞

−∞

∞

 

 

• Associative property 

𝑥1 𝑡 ∗ [𝑥2 𝑡 ∗ 𝑥3 𝑡 ] = [𝑥1 𝑡 ∗ 𝑥2 𝑡 ] ∗ 𝑥3 𝑡  

 

• Distributive property 

𝑥1 𝑡 ∗ [𝑥2 𝑡 +𝑥3 𝑡 ] = 𝑥1 𝑡 ∗ 𝑥2 𝑡 +𝑥1 𝑡 ∗ 𝑥3 𝑡  

 

 

Convolution properties 



• Shift property 

Consider 𝑥1 𝑡 ∗ 𝑥2 𝑡 = 𝑐 𝑡  

Then 𝑥1 𝑡 ∗ 𝑥2 𝑡 − 𝑇 = 𝑥1 𝑡 − 𝑇 ∗ 𝑥2 𝑡 = 𝑐 𝑡 − 𝑇  

Furthermore, 

𝑥1 𝑡 − 𝑇1 ∗ 𝑥2 𝑡 − 𝑇2 = 𝑐 𝑡 − 𝑇1 − 𝑇2  

 

• Convolution with an impulse: The convolution of a function with the 

unit impulse function is the function itself. Therefore, the unit impulse 

function acts as an identity (neutral) element for convolution. 

𝑥 𝑡 ∗ 𝛿 𝑡 =  𝑥 𝜏 𝛿(𝑡 − 𝜏)𝑑𝜏
∞

−∞

= 𝑥 𝑡  

 

 

Convolution properties cont. 



• Width (duration) property: Consider two functions 𝑥1 𝑡  and 𝑥2 𝑡  
with durations 𝑇1 and 𝑇2 respectively. 

Then, the duration of the convolution function 𝑥1 𝑡 ∗ 𝑥2 𝑡  is 𝑇1 + 𝑇2. 

 

 

 

 

 

• Causality property: If both system’s impulse response ℎ(𝑡) and input 

𝑥(𝑡) are causal then: 

𝑦 𝑡 = 𝑥 𝑡 ∗ ℎ 𝑡 =   𝑥 𝜏 ℎ(𝑡 − 𝜏)𝑑𝜏
𝑡

0

𝑡 ≥ 0

0 𝑡 < 0

 

 

 

 

Convolution properties cont. 



• For an LTI system with unit impulse response ℎ 𝑡 = 𝑒−2𝑡𝑢(𝑡)                    
determine the response 𝑦(𝑡) for the input 𝑥 𝑡 = 𝑒−𝑡𝑢(𝑡). 

• By definition we have: 

𝑦 𝑡 =  𝑥 𝜏 ℎ(𝑡 − 𝜏)𝑑𝜏
∞

−∞

=  𝑒−𝜏𝑢 𝜏 𝑒−2 𝑡−𝜏 𝑢 𝑡 − 𝜏 𝑑𝜏
∞

−∞

 

• Since 𝑢 𝜏 ≠ 0 for 𝜏 ≥ 0 and 𝑢 𝑡 − 𝜏 ≠ 0 for 𝑡 − 𝜏 ≥ 0 ⇒ 𝜏 ≤ 𝑡, we see 

that 𝑦 𝑡 ≠ 0 if 0 ≤ 𝜏 ≤ 𝑡 which also makes sense only if 𝑡 ≥ 0. 

• Therefore, 

𝑦 𝑡 =  𝑒−𝜏𝑢 𝜏 𝑒−2 𝑡−𝜏 𝑢 𝑡 − 𝜏 𝑑𝜏 =
∞

−∞

 𝑒−𝜏𝑢(𝜏)𝑒−2 𝑡−𝜏 𝑢(𝑡 − 𝜏)𝑑𝜏
𝑡

0

 

=  𝑒−𝜏𝑒−2 𝑡−𝜏 𝑑𝜏
𝑡

0
= 𝑒−2𝑡  𝑒−𝜏𝑒2𝜏 𝑑𝜏

𝑡

0
= 𝑒−2𝑡  𝑒𝜏 𝑑𝜏

𝑡

0
= 𝑒−2𝑡 𝑒𝑡 − 1  

= 𝑒−𝑡 − 𝑒−2𝑡, 𝑡 ≥ 0 

• Therefore, 𝑦 𝑡 = (𝑒−𝑡−𝑒−2𝑡)𝑢(𝑡). 

Example 



 

• ℎ 𝑡 = 𝑒−2𝑡𝑢(𝑡)  

• 𝑥 𝑡 = 𝑒−𝑡𝑢 𝑡  

• 𝑦 𝑡 = (𝑒−𝑡−𝑒−2𝑡)𝑢(𝑡) 

Example cont. 



• Convolution has been introduced last year in the Signals and 

Communications course.  We will emphasize into convolution and its 

physical implication in the next lecture. 

• Zero-state response (as determined through the convolution operation) 

is very important, and is intimately related to the zero-input response 

and the characteristic modes of the system. 

• All these are relevant to the 2nd year Control course. 

• You will also come across convolution again in your 2nd year 

Communications course and third year DSP course. 

Relation to other courses 


