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The importance of impuise response

Zero-state response assumes that the system is in “rest” state, i.e. all
Internal system variables are zero.

Deriving and understanding the zero-state response relies on knowing
the so called unit impulse response h(t).

Definition: The unit impulse response h(t) is the system’s response
when the input is the Dirac function, i.e., x(t) = §(t), with all the initial
conditions being zero att = 0~.

Any input x(t) can be broken into a sequence of narrow rectangular
pulses. Each pulse produces a system response. o g
’ / =
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If a system is linear and time invariant, A
the system’s response to x(t) is the sum of its /
responses to all narrow pulse components. /
h(t) is the system’s response to the rectangular

pulse at t = 0 as the pulse width approaches zero.
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How to determine the unit impulse response h(¢) 9

Given that a system is specified by the following differential equation,
determine its unit impulse response h(t).
(DN + a, DNt + -+ ay_1D + ay)y(t)
= (by_y DM + by_pr41 DMt + -+ by_1D + bpy)x(t), M <N

Remember the general equation of a system:

Q(D)y(t) = P(D)x(t)

It can be shown (proof is out of the scope of this course) that the
Impulse response h(t) is given by
h(t) = [P(D)yn(©)]u(t)

where u(t) is the unit step function. But what is y,, (t)?
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How to determine the unitimpulse response h(t) 2

y,(t) is the solution to the homogeneous differential equation (what we
called y,(t) in the previous lecture)

Q(D)yn(t) =0

with the following initial conditions:
yn(o) = yn(o) = j}n(o) = = y,gN_z) (0) =0, y,,(tN_l) (0)=1

We use y,(t) instead of y,(t) to associate y, (t) with the specific set of
Initial conditions mentioned above.

Remember that y, (t) is a linear combination of the characteristic modes
of the system.

yn(t) = Cle’llt + czellzt 4+ ...+ CNeANt

The constants c¢; are determined from the initial conditions.

Note that y,gk)(O) is the k™ derivative of y,(t) att = 0.
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Determine the impulse response for the system:
(D? + 3D + 2)y(t) = Dx(t)

This is a second-order system (ie., N=2, M=1) and the
characteristic polynomial is:
A +31+2) =1+ +2)

The characteristic roots are 4, = -1 and 1, = —2.
Therefore, y,,(t) = c;e™t + c,e %L,
Differentiating the above equation yields y,,(t) = —c;e™t — 2c,e 2t,

The initial conditions are y,,(0) = 1 and y,,(0) = 0.
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Example cont.

Setting t = 0 and substituting the initial conditions yields:

0=c +c
1l=—c; —2¢
The solution of the above set of equations is:
¢ =1
c, = —1
Therefore, we obtain:
yp(t) =et—e?t

Remember that h(t) is given by:
h(t) = [P(D)yn(D)]u(t)
with P(D) = D in this case.
Therefore:
h(t) = [P(D)y,(O]u(t) = (—e~*+2e™?Hu(t)
[Note that: P(D)y, (t) = D(t)y,,(t) = y,(t) = —e~t + 2e7%]
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x(t) | Linear y(t)
System

Consider a linear, time-invariant system with impulse response h(t).

The output at time t due to a shifted impulse with amplitude a located
at time instant T is the impulse amplitude a multiplied by a shifted
Impulse response located at T as well.

In other words:
6(t) - h(t)
ad(t) - ah(t)
ad(t — 1) » ah(t — 1)
If we generalize the above observation we can say that the output of a
linear system to an input x(t) = >, a;6(t — ;) is
n

y() = ) ah(t—1).

1=1
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Lero-state response cont.

We now consider how to determine the system’s
response y(t) to any input x(t) when the system
IS In the zero state (initial conditions are zero).

Define a pulse p,.(t) of height equal to 1 and
width At starting at t = 0 (see top figure on the
right).

Any input x(t) can be approximated by a sum of
narrow and shifted rectangular pulses.

The pulse starting at t = nAt has a height x(nAt)
It can be expressed as x(nAt)p.(t — nArt).
Therefore, x(t) is approximated by the sum of all
such pulses as follows: l‘

x(t) = Alir_r)l0 Y X(NAT)pa.(t — nAT) Or

T

boow

[ —

x(t) = Alim Z [x(nAT)] At(t — nAT) _HA,

AT

-0

S g
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The term x(nfr) pa.(t — nAT) represents a pulse p(t — nAt) with height
x(nAT)

At
As At — 0, the height of the pulse — o o
and the width of the pulse — 0 0
but the area remains x(nAt) and x(nA7)
X(Zfr) par(t — nAt) - x(nAt)S(t — nArt). y

Z
Therefore, P
_ x(nAT)
x(t) = Alglo z [ i ] Atpp,(t — nAT)
n

x(t) = Al%r_r)loz:x(nAr)ATG(t — nA7) e
n
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« Given the relationship x(t) = Alim0 Y x(nAT)AT6(t — nAt) and the fact that
T—
the system is linear, time-invariant, we have:

h(?)
poo 5(t) = h(t)

0@t — nA7)
5(t — nAt) = h(t — nA71) /{
0 nAT t—= 0 nAr f—m=
#= [x(nAT)AT)6(t — nAT) Ay(?)

x(nAT)h(t — nA7)AT

[x(nAT)AT]|6(t — nAT) = [x(nAT)AT]h(t — nAr)

0 nAr f=m 0 nAT s
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« Based on the previous analysis, the input-output relationship of an LTI
system as a function of the impulse response is shown below.

Alim0 Y, x(nAT)AT6(t — nAT) = Alim0 Yn X(nAT)ATh(t — nAT)
T PN

Alim0 Y, x(nAT)6(t — nAT)AT = Alimo Y x(nAT)h(t — nAT)AT
- x(7) — ~ y() —
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Therefore,
y(t) = Anmoz x(MAT)A(t — nAT)AT = f x(Dh(t — T)dr
T— — o
n

Knowing h(t), we can determine the response y(t) to any input x(t).

Observe the all-pervasive nature of the system’s characteristic modes,
which determines the impulse response of the system.

() )

LTI System

h(t)

) y(t) = x(h(t—1)dr
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The convolution integral

The previously derived integral equation occurs frequently in physical
sciences, engineering and mathematics.

It is given the name the convolution integral.

The convolution integral (known simply as convolution) of two functions
x1(t) and x,(t) is denoted symbolically as x; (t) * x, (t).

This is defined as
x1(8) % xp (8) = [ % (Dx, (¢ — D)d7
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Convolution properties

Commutative property: The order of operands does not matter.

co

x, () * x, (t) = ffooo x1 (D (t —1)dt = [__ %1 (t — D)xx(0)dr
letz=t—1.Inthatcaset=t—zanddrt=—-dzand t - +00 = z - +oo.
Therefore,

1) xx, () = [ (Dxp(t —Ddr = [ %1 (t — 2)x,(2) (—d2)

(0]

= — j_ x1(t — 2)x,(z)dz = f x1(t — 2)x2(2)dz = x5 (£) * x1 (t)

— 00

Associative property

x1 () * [x2 (£) * x3 (£)] = [x1(£) * x5 ()] * x3(¢)

Distributive property
x1(t) * [x2 (t) +x3 ()] = x1(£) * x5 () +x1(£) * x5 (¢)
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Convolution properties cont.

Shift property
Consider x,(t) * x5 (t) = c(t)
Thenx;(t) *x, t—T) =x,(t—T) *x, (t) =c(t—T)
Furthermore,
X1(E—T) *xx, t—Ty) =c(t—T; — T)

Convolution with an impulse: The convolution of a function with the
unit impulse function is the function itself. Therefore, the unit impulse
function acts as an identity (neutral) element for convolution.

x(t) *6(t) = foox(r)S(t —1)dt = x(t)
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Convolution properties cont.

Width (duration) property: Consider two functions x;(t) and x,(t)
with durations T; and T, respectively.

Then, the duration of the convolution function x;(t) * x, (t) is Ty + T5.

.tl(t)

ﬂ\*

x,(1)

_\

x(2) * x,(2)

/T

e

=

e—7—

ol

le
f

T, + T,———

I —

Causality property: If both system’s impulse response h(t) and input
x(t) are causal then:

y(&) = x(t) * h(t) =

(

\

th(r)h(t —17)dt t=0
0
0

t<o0
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For an LTI system with unit impulse response h(t) = e %tu(t)
determine the response y(t) for the input x(t) = e~ tu(t).

By definition we have:

(0]

y(t) = foox(r)h(t —17)dt = f e Tu(t)e 2Dy (t — 1)dr

Sinceu(r)#0fort 20andu(t—17)#0for(t—7)=0=71<t, we see
that y(t) # 0 if 0 < v < t which also makes sense only if t > 0.

Therefore,
(%) t

y(t) = f e Tu()e 2tDy(t — 1)dr =j e Tu(t)e 2Dy (t — 1)dr
— 00 0

_f —T —Z(t‘c)dT_e—theTZTdT_ethedT_BZt(e 1)
—elt—e 2t t>0
Therefore, y(t) = (e t—e~?Y)u(t).
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h(t) = e ?tu(t)
x(t) = e tu(t)
y(t) = (e *—e™?Hu(t)

h(1)

y(2)

[ —>
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Convolution has been introduced last year in the Signals and
Communications course. We will emphasize into convolution and its
physical implication in the next lecture.

Zero-state response (as determined through the convolution operation)
IS very important, and is intimately related to the zero-input response
and the characteristic modes of the system.

All these are relevant to the 2"d year Control course.

You will also come across convolution again in your 2" vyear
Communications course and third year DSP course.



