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• Remember that for a linear system:

Total response = zero-input response + zero-state response

• Zero-state response: think of an RLC circuit with no energy contained in

the inductor or capacitor yet (because the circuit hasn't been used yet)

but you start feeding the circuit some input signal.

• Zero-input response: think of an RLC circuit where you have energy

contained in the capacitor and inductor due to something that was

inputted to the system at a previous time but nothing is inputted

currently.

Total response of dynamic systems



• Note that zero-input and zero-state responses refer to the behaviour of 

dynamic systems. A dynamic system is a system that has some elements 

with memory; elements whose stored energy cannot change 

instantaneously, like capacitors, inductors, masses, springs.

• In such a system, the complete response is due to the initial state and to 

the inputs. The zero-input response depends only on the initial conditions. 

Think of a charged capacitor discharging through a resistor.

• The zero state response depends only on the inputs. Think of a 

discharged capacitor being charged by a voltage source through a 

resistor.

• An amplifier is not a dynamic system, so if there is no input there is no 

output.

Total response of dynamic systems cont.



• In this lecture, we will focus on a linear system’s zero-input response,

𝑦0(𝑡), which is the solution of the system’s equation when input 𝑥 𝑡 = 0.

• We will focus on systems which are described by:

(𝐷𝑁 + 𝑎1𝐷
𝑁−1 +⋯+ 𝑎𝑁−1𝐷 + 𝑎𝑁)𝑦 𝑡

= (𝑏𝑁−𝑀𝐷
𝑀 + 𝑏𝑁−𝑀+1𝐷

𝑀−1 +⋯+ 𝑏𝑁−1𝐷 + 𝑏𝑁)𝑥 𝑡

• Note that 𝐷𝑖 =
𝑑𝑖(∙)

𝑑𝑡𝑖
is the 𝑖th derivative.

• Alternatively

𝑄 𝐷 𝑦 𝑡 = 𝑃 𝐷 𝑥(𝑡)

• Therefore if 𝑥 𝑡 = 0 we obtain:

𝑄 𝐷 𝑦0(𝑡) = 0 ⇒

(𝐷𝑁 + 𝑎1𝐷
𝑁−1 +⋯+ 𝑎𝑁−1𝐷 + 𝑎𝑁)𝑦0(𝑡) = 0

Zero-input response basics



• From Differential Equations Theory, it is known that we may solve the

equation

(𝐷𝑁 + 𝑎1𝐷
𝑁−1 +⋯+ 𝑎𝑁−1𝐷 + 𝑎𝑁)𝑦0(𝑡) = 0 (3.1)

by letting 𝑦0 𝑡 = 𝑐𝑒𝜆𝑡, where 𝑐 and 𝜆 are constant parameters.

• In that case we have:

𝐷𝑦0 𝑡 =
𝑑𝑦0(𝑡)

𝑑𝑡
= 𝑐𝜆𝑒𝜆𝑡

𝐷2𝑦0 𝑡 =
𝑑2𝑦0(𝑡)

𝑑𝑡2
= 𝑐𝜆2𝑒𝜆𝑡

⋮

𝐷𝑁𝑦0 𝑡 =
𝑑𝑁𝑦0(𝑡)

𝑑𝑡𝑁
= 𝑐𝜆𝑁𝑒𝜆𝑡

Substitute into (3.1)

General solution to the zero-input response equation



• We get:

(𝜆𝑁 + 𝑎1𝜆
𝑁−1 +⋯+ 𝑎𝑁−1𝜆 + 𝑎𝑁)𝑒

𝜆𝑡 = 0 ⇒

(𝜆𝑁 + 𝑎1𝜆
𝑁−1 +⋯+ 𝑎𝑁−1𝜆 + 𝑎𝑁) = 0

• This is identical to the polynomial 𝑄(𝐷) with 𝜆 replacing 𝐷, i.e.,

𝑄 𝜆 = 0

• We can now express 𝑄 𝜆 = 0 in factorized form:

𝑄 𝜆 = 𝜆 − 𝜆1 𝜆 − 𝜆2 … 𝜆 − 𝜆𝑁 = 0 (3.2)

• Therefore, there are 𝑁 solutions for 𝜆, which we can denote with

𝜆1, 𝜆2, … , 𝜆𝑁. At first we assume that all 𝜆𝑖 are distinct.

General solution to the zero-input response equation cont.



• Therefore, the equation

(𝐷𝑁 + 𝑎1𝐷
𝑁−1 +⋯+ 𝑎𝑁−1𝐷 + 𝑎𝑁)𝑦0(𝑡) = 0

has 𝑁 possible solutions 𝑐1𝑒
𝜆1𝑡, 𝑐2𝑒

𝜆2𝑡, …, , 𝑐𝑁𝑒
𝜆𝑁𝑡 where

𝑐1, 𝑐2, …, , 𝑐𝑁 are arbitrary constants.

• It can be shown that the general solution is the sum of all these terms:

𝑦0 𝑡 = 𝑐1𝑒
𝜆1𝑡 + 𝑐2𝑒

𝜆2𝑡 +⋯+ 𝑐𝑁𝑒
𝜆𝑁𝑡

• In order to determine the 𝑁 arbitrary constants, we need to have 𝑁
constraints. These are called initial or boundary or auxiliary conditions.

General solution to the zero-input response equation cont.



• The polynomial 𝑄 𝜆 is called the characteristic polynomial of the

system.

• 𝑄 𝜆 = 0 is the characteristic equation of the system.

• The roots of the characteristic equation 𝑄 𝜆 = 0 , i.e., 𝜆1, 𝜆2, … , 𝜆𝑁,

are extremely important.

• They are called by different names:

▪ Characteristic values

▪ Eigenvalues

▪ Natural frequencies

• The exponentials 𝑒𝜆𝑖𝑡, 𝑖 = 1,2, … , 𝑁 are the characteristic modes (also

known as natural modes) of the system.

• Characteristic modes determine the system’s behaviour.

Characteristic polynomial



• For zero-input response, we want to find the solution to:

𝐷2 + 3𝐷 + 2 𝑦0(𝑡) = 0

• The characteristic equation for this system is:

𝜆2 + 3𝜆 + 2 = 𝜆 + 1 𝜆 + 2 = 0

• Therefore, the characteristic roots are 𝜆1 = −1 and 𝜆2 = −2.

• The zero-input response is

𝑦0 𝑡 = 𝑐1𝑒
−𝑡 + 𝑐2𝑒

−2𝑡

Find 𝑦0(𝑡), the zero-input component of 

the response, for a LTI system described 

by the following differential equation:

𝐷2 + 3𝐷 + 2 𝑦 𝑡 = 𝐷𝑥(𝑡)
when the initial conditions are:

𝑦0 0 = 0, ሶ𝑦0 0 = −5

Example 1



• To find the two unknowns 𝑐1 and 𝑐2, we use the initial conditions:

𝑦0 0 = 0, ሶ𝑦0 0 = −5

• This yields two simultaneous equations:

0 = 𝑐1 + 𝑐2
−5 = −𝑐1 − 2𝑐2

• Solving the system gives:

𝑐1 = −5
𝑐2 = 5

• Therefore, the zero-input response of 𝑦(𝑡) is given by:

𝑦0 𝑡 = −5𝑒−𝑡 + 5𝑒−2𝑡

Example 1



• The discussion so far assumes that all characteristic roots are distinct.  

If there are repeated roots, the form of the solution is modified.

• For the case of a second order polynomial with two equal roots, the 

possible form of the differential equation could be 𝐷 − 𝜆 2𝑦0 𝑡 = 0. In 

that case its solution is given by:

𝑦0 𝑡 = (𝑐1 + 𝑐2𝑡)𝑒
𝜆𝑡

• In general, the characteristic modes for the differential equation

𝐷 − 𝜆 𝑟𝑦0 𝑡 = 0

(a form which reflects the scenario for 𝑟 repeated roots) are 

𝑒𝜆𝑡, 𝑡𝑒𝜆𝑡, 𝑡2𝑒𝜆𝑡,…, 𝑡𝑟−1𝑒𝜆𝑡

• The solution for 𝑦0 𝑡 is

𝑦0 𝑡 = (𝑐1 + 𝑐2𝑡 + ⋯+ 𝑐𝑟𝑡
𝑟−1)𝑒𝜆𝑡

Repeated characteristic roots



• The characteristic polynomial for this system is:

𝜆2 + 6𝜆 + 9 = 𝜆 + 3 2

• The repeated roots are therefore 𝜆1,2 = −3.

• The zero-input response is 𝑦0 𝑡 = (𝑐1 + 𝑐2𝑡)𝑒
−3𝑡.

• Now,  the constants 𝑐1 and 𝑐2 are determined using the initial 

conditions and this gives 𝑐1 = 3 and 𝑐2 = 2.

• Therefore,

𝑦0 𝑡 = (3 + 2𝑡)𝑒−3𝑡, 𝑡 ≥ 0

Find 𝑦0(𝑡), the zero-input component of the response, for a LTI system 

described by the following differential equation:

𝐷2 + 6𝐷 + 9 𝑦 𝑡 = (3𝐷 + 5)𝑥(𝑡)
when the initial conditions are 𝑦0 0 = 3, ሶ𝑦0 0 = −7.

Example 2



• Solutions of the characteristic equation may result in complex roots.

• For real (i.e. physically realizable) systems - in other words, for systems 

where the coefficients of the characteristic polynomial 𝑄 𝜆 are real - all 

complex roots must occur in conjugate pairs.

• In other words, if 𝛼 + 𝑗𝛽 is a root, then there must exist the root 𝛼 − 𝑗𝛽. 

• The zero-input response corresponding to this pair of conjugate roots is:

𝑦0 𝑡 = 𝑐1𝑒
(𝛼+𝑗𝛽)𝑡 + 𝑐2𝑒

(𝛼−𝑗𝛽)𝑡

• For a real system, the response 𝑦0(𝑡) must also be real. This is possible 

only if 𝑐1 and 𝑐2 are conjugates too.

• Let 𝑐1 =
𝑐

2
𝑒𝑗𝜃 and 𝑐2 =

𝑐

2
𝑒−𝑗𝜃.

• This gives

𝑦0 𝑡 =
𝑐

2
𝑒𝑗𝜃𝑒(𝛼+𝑗𝛽)𝑡 +

𝑐

2
𝑒−𝑗𝜃𝑒(𝛼−𝑗𝛽)𝑡

=
𝑐

2
𝑒𝛼𝑡[𝑒𝑗(𝛽𝑡+𝜃)+𝑒−𝑗(𝛽𝑡+𝜃)] = 𝑐𝑒𝛼𝑡cos(𝛽𝑡 + 𝜃)

Complex characteristic roots



• The characteristic polynomial for this system is:

𝜆2 + 4𝜆 + 40 = 𝜆2 + 4𝜆 + 4 + 36 = 𝜆 + 2 2 + 62

= 𝜆 + 2 − 𝑗6 𝜆 + 2 + 𝑗6

• The complex roots are therefore 𝜆1 = −2 + 𝑗6 and 𝜆2 = −2 − 𝑗6.

The zero-input response in real form is (𝛼 = −2, 𝛽 = 6)
𝑦0 𝑡 = 𝑐𝑒−2𝑡cos(6𝑡 + 𝜃)

Find 𝑦0(𝑡), the zero-input component of the response, for a LTI system 

described by the following differential equation:

𝐷2 + 4𝐷 + 40 𝑦 𝑡 = (𝐷 + 2)𝑥(𝑡)
when the initial conditions are 𝑦0 0 = 2, ሶ𝑦0 0 = 16.78.

Example 3



• To find the constants 𝑐 and 𝜃, we use the initial conditions

𝑦0 0 = 2, ሶ𝑦0 0 = 16.78

• Differentiating equation 𝑦0 𝑡 = 𝑐𝑒−2𝑡cos(6𝑡 + 𝜃) gives:

ሶ𝑦0 𝑡 = −2𝑐𝑒−2𝑡 cos 6𝑡 + 𝜃 − 6𝑐𝑒−2𝑡sin(6𝑡 + 𝜃)

• Using the initial conditions, we obtain:

2 = 𝑐 cos 𝜃
16.78 = −2𝑐 cos 𝜃 − 6𝑐 sin 𝜃

• This reduces to:

𝑐 cos 𝜃 = 2
𝑐 sin 𝜃 = −3.463

• Hence,

𝑐2 = 22 + (−3.463)2= 16 ⇒ 𝑐 = 4

𝜃 = tan−1
−3.463

2
= −

𝜋

3

• Finally, the solution is 𝑦0 𝑡 = 4𝑒−2𝑡cos(6𝑡 −
𝜋

3
).

Example 3 cont.



• Why do we need auxiliary (or boundary) conditions in order to solve for

the zero-input response?

• Differential operation is not invertible because some information is lost.

• Therefore, in order to get 𝑦(𝑡) from 𝑑𝑦(𝑡)/𝑑𝑡 , one extra piece of

information such as 𝑦(0) is needed.

• Similarly, if we need to determine 𝑦(𝑡) from
𝑑2𝑦(𝑡)

𝑑𝑡2
we need 2 pieces of

information.

• In general, to determine 𝑦(𝑡) uniquely from its 𝑁th derivative, we need

𝑁 additional constraints.

• These constraints are called auxiliary conditions.

• When these conditions are given at 𝑡 = 0 , they are called initial

conditions.

Comments on auxiliary conditions



• In much of our analysis, the input is assumed to start at 𝑡 = 0.

• There are subtle differences between time 𝑡 = 0 exactly, time just before

𝑡 = 0 denoted by 𝑡 = 0− and time just after 𝑡 = 0 denoted by 𝑡 = 0+.

• At 𝑡 = 0− the total response 𝑦(𝑡) consists solely of the zero-input

component 𝑦0 𝑡 because the input has not started yet. Thus,

𝑦 0− = 𝑦0 0− , ሶ𝑦 0− = ሶ𝑦0 0− and so on.

• Applying an input 𝑥(𝑡) at 𝑡 = 0, while not affecting 𝑦0 𝑡 , i.e., 𝑦0 0− =
y 0+ , ሶ𝑦0 0− = ሶ𝑦0 0+ etc., in general WILL affect 𝑦 𝑡 .

time

𝑡 = 0

𝑡 = 0− 𝑡 = 0+

The meaning of 𝟎+ and 𝟎−



Insights into zero-input behaviour

• Assume (a mechanical) system is initially at rest.

• If we disturb a system momentarily and then remove the disturbance so 

that the system goes back to zero-input, the system will not come back 

to rest instantaneously.

• In general, it will go back to rest over a period of time, and only through 

some special type of motion that is characteristic of the system.

• Such response must be sustained without any external source (because 

the disturbance has been removed).

• In fact the system uses a linear combination of the characteristic modes 

to come back to the rest position while satisfying some boundary (or 

initial) conditions.



• This example demonstrates that any combination of characteristic 

modes can be sustained by the system with no external input.

• Consider this RL circuit.

• The loop equation is 𝐷 + 2 𝑦 𝑡 = 𝑥 𝑡 .

• It has a single characteristic root 𝜆 = −2

and the characteristic mode is 𝑒−2𝑡.

• Therefore, the loop current equation is 𝑦 𝑡 = 𝑐𝑒−2𝑡.

• Now, let us compute the input 𝑥(𝑡) required to sustain this loop 

current:

𝑥 𝑡 = 𝐿
𝑑𝑦(𝑡)

𝑑𝑡
+ 𝑅𝑦 𝑡 =

𝑑(𝑐𝑒−2𝑡)

𝑑𝑡
+ 2 𝑐𝑒−2𝑡 = −2 𝑐𝑒−2𝑡+ 2 𝑐𝑒−2𝑡 = 0

The loop current is sustained by the RL circuit on its own 

without any external input voltage.

Example 4



• Consider now an 𝐿𝐶 circuit with 𝐿 = 1𝐻, 𝐶 = 1𝐹.

• The current across the loop is 𝑦 𝑡 . Therefore,

𝑣𝐿 𝑡 + 𝑣𝐶 𝑡 = 𝐿
𝑑𝑦(𝑡)

𝑑𝑡
+

1

𝐶
0
𝑡
𝑦 𝜏 𝑑𝜏 = 𝑥(𝑡) ⇒

𝐿
𝑑2𝑦(𝑡)

𝑑𝑡2
+

1

𝐶
𝑦 𝑡 =

𝑑𝑥(𝑡)

𝑑𝑡

• The loop equation is 𝐷2 + 1 𝑦 𝑡 = 𝐷𝑥(𝑡).

• It has two complex conjugate characteristic

roots 𝜆 = ±𝑗, and the characteristic modes are 𝑒𝑗𝑡, 𝑒−𝑗𝑡.

• Therefore, the loop current equation is 𝑦 𝑡 = 𝑐cos(𝑡 + 𝜃).

• Now, let us compute the input 𝑥(𝑡) required to sustain this loop current:

𝑑𝑥(𝑡)

𝑑𝑡
= 𝐿

𝑑2𝑦(𝑡)

𝑑𝑡2
+

1

𝐶
𝑦 𝑡 =

𝑑2(𝑐cos(𝑡+𝜃))
𝑑𝑡2

+ 𝑐cos 𝑡 + 𝜃 = 0

As previously, the loop current is indefinitely sustained by the 

LC circuit on its own without any external input voltage.

Example 5



• Any signal consisting of a 

system’s characteristic mode 

is sustained by the system on 

its own.  

• In other words, the system 

offers NO obstacle to such 

signals.

• It is like asking an alcoholic to 

be a whisky taster.

• Driving a system with an input 

of the form of the 

characteristic mode will cause 

resonance behaviour.

The resonance behaviour

SF121.mpg


• Zero-input response is very important to understanding control

systems. However, the 2nd year Control course will approach the

subject from a different point of view.

• You should also have come across some of these concepts last year

in Circuit Analysis course, but not from a “black box” system point of

view.

• Ideas in this lecture is essential for deep understanding of the next

two lectures on impulse response and on convolution, both you have

touched on in your first year course on Signals and Communications.

Relating to other courses


