Imperial College London

Signals and Systems

Lecture 15

DR TANIA STATHAKI

READER (ASSOCIATE PROFESSOR) IN SIGNAL PROCESSING IMPERIAL COLLEGE LONDON

The z-transform derived from the Laplace transform.

- Consider a discrete-time signal $x(t)$ sampled every T seconds.

$$
x(t)=x_{0} \delta(t)+x_{1} \delta(t-T)+x_{2} \delta(t-2 T)+x_{3} \delta(t-3 T)+\cdots
$$

- Recall that in the Laplace domain we have:

$$
\begin{aligned}
\mathcal{L}\{\delta(t)\} & =1 \\
\mathcal{L}\{\delta(t-T)\} & =e^{-s T}
\end{aligned}
$$

- Therefore, the Laplace transform of $x(t)$ is:

$$
X(s)=x_{0}+x_{1} e^{-s T}+x_{2} e^{-s 2 T}+x_{3} e^{-s 3 T}+\cdots
$$

- Now define $z=e^{s T}=e^{(\sigma+j \omega) T}=e^{\sigma T} \cos \omega T+j e^{\sigma T} \sin \omega T$.
- Finally, define

z^{-1} : the sampled period delay operator

- From the Laplace time-shift property, we know that $z=e^{s T}$ is time advance by T seconds (T is the sampling period).
- Therefore, $z^{-1}=e^{-s T}$ corresponds to one sampling period delay.
- As a result, all sampled data (and discrete-time systems) can be expressed in terms of the variable z.
- More formally, the unilateral z-transform of a causal sampled sequence:

$$
x[n]=\{x[0], x[1], x[2], x[3], \ldots\}
$$

is given by:

$$
X[z]=x_{0}+x_{1} z^{-1}+x_{2} z^{-2}+x_{3} z^{-3}+\cdots=\sum_{n=0}^{\infty} x[n] z^{-n}, x_{n}=x[n]
$$

- The bilateral z-transform for any sampled sequence is:

$$
X[z]=\sum_{n=-\infty}^{\infty} x[n] z^{-n}
$$

Laplace, Fourier and z - transforms

	Definition	Purpose	Suitable for
Laplace transform	$X(s)=\int_{-\infty}^{\infty} x(t) e^{-s t} d t$	Converts integraldifferential equations to algebraic equations.	Continuous-time signal and systems analysis. Stable or unstable.
Fourier transform	$X(\omega)=\int_{-\infty}^{\infty} x(t) e^{-j \omega t} d t$	Converts finite energy signals to frequency domain representation.	Continuous-time, stable systems. Convergent signals only. Best for steadystate.
Discrete Fourier transform	$\begin{aligned} & X\left[r \omega_{0}\right]= \\ & \sum_{n=-\infty}^{N_{0}-1} T X[n T] e^{-j n r \Omega_{0}} \end{aligned}$ T sampling period $\Omega_{0}=\omega_{0} T=2 \pi / N_{0}$	Converts discretetime signals to discrete frequency domain.	Discrete time signals.
$z-$ transform	$X[z]=\sum_{n=-\infty}^{\infty} x[n] z^{-n}$	Converts difference equations into algebraic equations.	Discrete-time system and signal analysis; stable or unstable.

Example: Find the z-transform of $x[n]=\gamma^{n} u[n]$

- Find the z-transform of the causal signal $\gamma^{n} u[n]$, where γ is a constant.
- By definition:

$$
\begin{gathered}
X[z]=\sum_{n=-\infty}^{\infty} \gamma^{n} u[n] z^{-n}=\sum_{n=0}^{\infty} \gamma^{n} z^{-n}=\sum_{n=0}^{\infty}\left(\frac{\gamma}{z}\right)^{n} \\
=1+\left(\frac{\gamma}{z}\right)+\left(\frac{\gamma}{z}\right)^{2}+\left(\frac{\gamma}{z}\right)^{3}+\cdots
\end{gathered}
$$

- We apply the geometric progression formula:

$$
1+x+x^{2}+x^{3}+\cdots=\frac{1}{1-x},|x|<1
$$

- Therefore,

$$
\begin{gathered}
X[z]=\frac{1}{1-\frac{\gamma}{z}},\left|\frac{\gamma}{z}\right|<1 \\
=\frac{z}{z-\gamma},|z|>|\gamma|
\end{gathered}
$$

- We notice that the z-transform exists for certain values of z. These values form the so called Region-Of-Convergence (ROC) of the transform.

Example: Find the $\mathrm{z}-$ transform of $x[n]=\gamma^{n} u[n]$ cont.

- Observe that a simple equation in z-domain results in an infinite sequence of samples.
- The figures below depict the signal in time (left) and the ROC, shown with the shaded area, within the z-plane.

Example: Find the $Z-$ transform of $x[n]=-\gamma^{n} u[-n-1]$

- Find the z-transform of the anticausal signal $-\gamma^{n} u[-n-1]$, where γ is a constant.
- By definition:

$$
\begin{aligned}
X[z]= & \sum_{n=-\infty}^{\infty}-\gamma^{n} u[-n-1] z^{-n}=\sum_{n=-\infty}^{-1}-\gamma^{n} z^{-n}=-\sum_{n=1}^{\infty} \gamma^{-n} z^{n}=-\sum_{n=1}^{\infty}\left(\frac{z}{\gamma}\right)^{n} \\
& =-\frac{z}{\gamma} \sum_{n=0}^{\infty}\left(\frac{z}{\gamma}\right)^{n}=-\left(\frac{z}{\gamma}\right)\left[1+\left(\frac{z}{\gamma}\right)+\left(\frac{z}{\gamma}\right)^{2}+\left(\frac{z}{\gamma}\right)^{3}+\cdots\right]
\end{aligned}
$$

- Therefore,

$$
\begin{aligned}
X[z] & =-\left(\frac{z}{\gamma}\right) \frac{1}{1-\frac{z}{\gamma}},\left|\frac{z}{\gamma}\right|<1 \\
& =\frac{z}{z-\gamma},|z|<|\gamma|
\end{aligned}
$$

- We notice that the z-transform exists for certain values of z, which consist the complement of the ROC of the function $\gamma^{n} u[n]$ with respect to the z-plane.

Summary of previous examples

- We proved that the following two functions:
- The causal function $\gamma^{n} u[n]$ and
- the anti-causal function $-\gamma^{n} u[-n-1]$ have:
* The same analytical expression for their z-transforms.
* Complementary ROCs. More specifically, the union of their ROCS forms the entire z-plane.
- Observe that the ROC of $\gamma^{n} u[n]$ is $|z|>|\gamma|$.
- In case that $\gamma^{n} u[n]$ is part of a causal system's impulse response, we see that the condition $|\gamma|<1$ must hold. This is because, since $\lim _{n \rightarrow \infty}(\gamma)^{n}=\infty$, for $|\gamma|>1$, the system will be unstable in that case.
- Therefore, in causal systems, stability requires that the ROC of the system's transfer function includes the circle with radius 1 centred at origin within the z-plane. This is the so called unit circle.

Example: Find the z -transform of $\delta[n]$ and $u[n]$

- By definition $\delta[0]=1$ and $\delta[n]=0$ for $n \neq 0$.

$$
X[z]=\sum_{n=-\infty}^{\infty} \delta[n] z^{-n}=\delta[0] z^{-0}=1
$$

- By definition $u[n]=1$ for $n \geq 0$.

$$
\begin{gathered}
X[z]=\sum_{n=-\infty}^{\infty} u[n] z^{-n}=\sum_{n=0}^{\infty} z^{-n}=\frac{1}{1-\frac{1}{z}},\left|\frac{1}{z}\right|<1 \\
=\frac{z}{z-1},|z|>1
\end{gathered}
$$

Example: Find the $z-$ transform of $\cos \beta n u[n]$

- We write $\cos \beta n=\frac{1}{2}\left(e^{j \beta n}+e^{-j \beta n}\right)$.
- From previous analysis we showed that:

$$
\gamma^{n} u[n] \Leftrightarrow \frac{z}{z-\gamma},|z|>|\gamma|
$$

- Hence,

$$
e^{ \pm j \beta n} u[n] \Leftrightarrow \frac{z}{z-e^{ \pm j \beta}},|z|>\left|e^{ \pm j \beta}\right|=1
$$

- Therefore,

$$
X[z]=\frac{1}{2}\left[\frac{z}{z-e^{j \beta}}+\frac{z}{z-e^{-j \beta}}\right]=\frac{z(z-\cos \beta)}{z^{2}-2 z \cos \beta+1},|z|>1
$$

z-transform of 5 impulses

- Find the z-transform of the signal depicted in the figure.

- By definition:

$$
X[z]=1+\frac{1}{z}+\frac{1^{`}}{z^{2}}+\frac{1}{z^{3}}+\frac{1}{z^{4}}=\sum_{k=0}^{4}\left(z^{-1}\right)^{k}=\frac{1-\left(z^{-1}\right)^{5}}{1-z^{-1}}=\frac{z}{z-1}\left(1-z^{-5}\right)
$$

z -transform Table

No.	$\boldsymbol{x}[\boldsymbol{n}]$	$\boldsymbol{X}[\boldsymbol{z}]$
1	$\delta[n-n]$	$\frac{z^{-k}}{z-1}$
2	$u[n]$	$\frac{z}{(z-1)^{2}}$
3	$n u[n]$	$\frac{z(z+1)}{(z-1)^{3}}$
4	$n^{2} u[n]$	$\frac{z\left(z^{2}+4 z+1\right)}{(z-1)^{4}}$
5	$n^{3} u[n]$	$\frac{z}{z-\gamma}$
6	$\gamma^{n} u[n]$	$\frac{1}{z-\gamma}$
7	$\gamma^{n-1} u[n-1]$	$\frac{\gamma z}{(z-\gamma)^{2}}$

z -transform Table

No.	$\boldsymbol{x}[\boldsymbol{n}]$	$\boldsymbol{X}[\mathbf{z}]$
10	$\frac{n(n-1)(n-2) \cdots(n-m+1)}{\gamma^{m} m!} \gamma^{n} u[n]$	$\frac{z}{(z-\gamma)^{m+1}}$
11a	$\|\gamma\|^{n} \cos \beta n u[n]$	$\frac{z(z-\|\gamma\| \cos \beta)}{z^{2}-(2\|\gamma\| \cos \beta) z+\|\gamma\|^{2}}$
11b	$\|\gamma\|^{n} \sin \beta n u[n]$	$\frac{z\|\gamma\| \sin \beta}{z^{2}-(2\|\gamma\| \cos \beta) z+\|\gamma\|^{2}}$
12a	$r\|\gamma\|^{n} \cos (\beta n+\theta) u[n]$	$\frac{r z[z \cos \theta-\|\gamma\| \cos (\beta-\theta)]}{z^{2}-(2\|\gamma\| \cos \beta) z+\|\gamma\|^{2}}$
12b	$r\|\gamma\|^{n} \cos (\beta n+\theta) u[n] \quad \gamma=\|\gamma\| e^{j \beta}$	$\frac{\left(0.5 r e^{j \theta}\right) z}{z-\gamma}+\frac{\left(0.5 r e^{-j \theta}\right) z}{z-\gamma^{*}}$
12c	$r\|\gamma\|^{n} \cos (\beta n+\theta) u[n]$	$\frac{z(A z+B)}{z^{2}+2 a z+\|\gamma\|^{2}}$
	$r=\sqrt{\frac{A^{2}\|\gamma\|^{2}+B^{2}-2 A a B}{\|\gamma\|^{2}-a^{2}}} \quad \beta=\cos ^{-1} \frac{-a}{\|\gamma\|} \quad \theta=\tan ^{-1} \frac{A a-B}{A \sqrt{\|\gamma\|^{2}-a^{2}}}$	

Inverse z -transform

- As with other transforms, inverse z-transform is used to derive $x[n]$ from $X[z]$, and is formally defined as:

$$
x[n]=\frac{1}{2 \pi j} \oint X[z] z^{n-1} d z
$$

- Here the symbol \oint indicates an integration in counter-clockwise direction around a closed path within the complex z-plane (known as contour integral).
- Such contour integral is difficult to evaluate (but could be done using Cauchy's residue theorem), therefore we often use other techniques to obtain the inverse z-transform.
- One such technique is to use the z-transform pairs Table shown in the last two slides with partial fraction expansion.

Find the inverse z-transform in the case of real unique poles

- Find the inverse z-transform of $X[z]=\frac{8 z-19}{(z-2)(z-3)}$

Solution

$$
\begin{gathered}
\frac{X[z]}{z}=\frac{8 z-19}{z(z-2)(Z-3)}=\frac{\left(-\frac{19}{6}\right)}{z}+\frac{3 / 2}{z-2}+\frac{5 / 3}{z-3} \\
X[z]=-\frac{19}{6}+\frac{3}{2}\left(\frac{z}{z-2}\right)+\frac{5}{3}\left(\frac{z}{z-3}\right)
\end{gathered}
$$

By using the simple transforms that we derived previously we get:

$$
x[n]=-\frac{19}{6} \delta[n]+\left[\frac{3}{2} 2^{n}+\frac{5}{3} 3^{n}\right] u[n]
$$

Find the inverse z-transform in the case of real repeated poles

- Find the inverse z-transform of $X[z]=\frac{z\left(2 z^{2}-11 z+12\right)}{(z-1)(z-2)^{3}}$

Solution

$$
\frac{X[z]}{z}=\frac{\left(2 z^{2}-11 z+12\right)}{(z-1)(z-2)^{3}}=\frac{k}{z-1}+\frac{a_{0}}{(z-2)^{3}}+\frac{a_{1}}{(z-2)^{2}}+\frac{a_{2}}{(z-2)}
$$

- We use the so called covering method to find k and a_{0}

$$
\begin{gathered}
k=\left.\frac{\left(2 z^{2}-11 z+12\right)}{(z-1)(z-2)^{3}}\right|_{z=1}=-3 \\
a_{0}=\left.\frac{\left(2 z^{2}-11 z+12\right)}{(z-1)(z-2)^{3}}\right|_{z=2}=-2
\end{gathered}
$$

The shaded areas above indicate that they are excluded from the entire function when the specific value of z is applied.

Find the inverse z -transform in the case of real repeated poles cont.

- Find the inverse z-transform of $X[z]=\frac{z\left(2 z^{2}-11 z+12\right)}{(z-1)(z-2)^{3}}$

Solution

$$
\frac{X[z]}{z}=\frac{\left(2 z^{2}-11 z+12\right)}{(z-1)(z-2)^{3}}=\frac{-3}{z-1}+\frac{-2}{(z-2)^{3}}+\frac{a_{1}}{(z-2)^{2}}+\frac{a_{2}}{(z-2)}
$$

- To find a_{2} we multiply both sides of the above equation with z and let $z \rightarrow \infty$.

$$
0=-3-0+0+a_{2} \Rightarrow a_{2}=3
$$

- To find a_{1} let $z \rightarrow 0$.

$$
\begin{gathered}
\frac{12}{8}=3+\frac{1}{4}+\frac{a_{1}}{4}-\frac{3}{2} \Rightarrow a_{1}=-1 \\
\frac{X[z]}{z}=\frac{\left(2 z^{2}-11 z+12\right)}{(z-1)(z-2)^{3}}=\frac{-3}{z-1}-\frac{2}{(z-2)^{3}}-\frac{1}{(z-2)^{2}}+\frac{3}{(z-2)} \Rightarrow \\
X[z]=\frac{-3 z}{z-1}-\frac{2 z}{(z-2)^{3}}-\frac{z}{(z-2)^{2}}+\frac{3 z}{(z-2)}
\end{gathered}
$$

Find the inverse z -transform in the case of real repeated poles cont.

$$
X[z]=\frac{-3 z}{z-1}-\frac{2 z}{(z-2)^{3}}-\frac{z}{(z-2)^{2}}+\frac{3 z}{(z-2)}
$$

- We use the following properties:
- $\gamma^{n} u[n] \Leftrightarrow \frac{z}{z-\gamma}$
- $\frac{n(n-1)(n-2) \ldots(n-m+1)}{\gamma^{m} m!} \gamma^{n} u[n] \Leftrightarrow \frac{z}{(z-\gamma)^{m+1}}$
$\left[-\frac{2 z}{(z-2)^{3}}=(-2) \frac{z}{(z-2)^{2+1}} \Leftrightarrow(-2) \frac{n(n-1)}{2^{2} 2!} \gamma^{n} u[n]=-2 \frac{n(n-1)}{8} \cdot 2^{n} u[n]\right.$
- Therefore,

$$
\begin{aligned}
& x[n]=\left[-3 \cdot 1^{n}-2 \frac{n(n-1)}{8} \cdot 2^{n}-\frac{n}{2} \cdot 2^{n}+3 \cdot 2^{n}\right] u[n] \\
& =-\left[3+\frac{1}{4}\left(n^{2}+n-12\right) 2^{n}\right] u[n]
\end{aligned}
$$

Find the inverse z-transform in the case of complex poles

- Find the inverse z-transform of $X[z]=\frac{2 z(3 z+17)}{(z-1)\left(z^{2}-6 z+25\right)}$

Solution

$$
\begin{gathered}
X[z]=\frac{2 z(3 z+17)}{(z-1)(z-3-j 4)(z-3+j 4)} \\
\frac{X[z]}{z}=\frac{\left(2 z^{2}-11 z+12\right)}{(z-1)(z-2)^{3}}=\frac{k}{z-1}+\frac{a_{0}}{(z-2)^{3}}+\frac{a_{1}}{(z-2)^{2}}+\frac{a_{2}}{(z-2)}
\end{gathered}
$$

Whenever we encounter a complex pole we need to use a special partial fraction method called quadratic factors method.

$$
\frac{X[z]}{z}=\frac{2(3 z+17)}{(z-1)\left(z^{2}-6 z+25\right)}=\frac{2}{z-1}+\frac{A z+B}{z^{2}-6 z+25}
$$

We multiply both sides with z and let $z \rightarrow \infty$:

$$
0=2+A \Rightarrow A=-2
$$

Therefore,

$$
\frac{2(3 z+17)}{(z-1)\left(z^{2}-6 z+25\right)}=\frac{2}{z-1}+\frac{-2 z+B}{z^{2}-6 z+25}
$$

Find the inverse z-transform in the case of complex poles cont.

$$
\frac{2(3 z+17)}{(z-1)\left(z^{2}-6 z+25\right)}=\frac{2}{z-1}+\frac{-2 z+B}{z^{2}-6 z+25}
$$

To find B we let $z=0$:

$$
\begin{gathered}
\frac{-34}{25}=-2+\frac{B}{25} \Rightarrow B=16 \\
\frac{X[z]}{z}=\frac{2}{z-1}+\frac{-2 z+16}{z^{2}-6 z+25} \Rightarrow X[z]=\frac{2 z}{z-1}+\frac{z(-2 z+16)}{z^{2}-6 z+25}
\end{gathered}
$$

We use the following property:
$r|\gamma|^{n} \cos (\beta n+\theta) u[n] \Leftrightarrow \frac{z(A z+B)}{z^{2}+2 a z+|\gamma|^{2}}$ with $A=-2, B=16, a=-3,|\gamma|=5$.
$r=\sqrt{\frac{A^{2}|\gamma|^{2}+B^{2}-2 A a B}{|\gamma|^{2}-a^{2}}}=\sqrt{\frac{4 \cdot 25+256-2 \cdot(-2) \cdot(-3) \cdot 16}{25-9}}=3.2, \beta=\cos ^{-1} \frac{-a}{|\gamma|}=0.927 \mathrm{rad}$,
$\theta=\tan ^{-1} \frac{A a-B}{A \sqrt{|\gamma|^{2}-a^{2}}}=-2.246 \mathrm{rad}$.
Therefore, $x[n]=[2+3.2 \cos (0.927 n-2.246)] u[n]$

Mapping from s-plane to z-plane

- Since $z=e^{s T}=e^{(\sigma+j \omega) T}=e^{\sigma T} e^{j \omega T}$ where $T=\frac{2 \pi}{\omega_{s}}$, we can map the s-plane to the z-plane as below.
- For $\sigma=0, s=j \omega$ and $z=e^{j \omega T}$. Therefore, the imaginary axis of the s-plane is mapped to the unit circle on the z-plane.

Mapping from S-plane to Z-plane cont.

- For $\sigma<0,|z|=e^{\sigma T}<1$. Therefore, the left half of the s-plane is mapped to the inner part of the unit circle on the z-plane (turquoise areas).
- Note that we normally use Cartesian coordinates for the s-plane ($s=\sigma+j \omega$) and polar coordinates for the z-plane ($z=r e^{j \omega}$).

Mapping from s-plane to z-plane cont.

- For $\sigma>0,|z|=e^{\sigma T}>1$. Therefore, the right half of the s-plane is mapped to the outer part of the unit circle on the z-plane (pink areas).

Find the inverse z -transform in the case of complex poles

- Using the results of today's Lecture and also Lecture 9 on stability of causal continuous-time systems and the mapping from the s-plane to the z-plane, we can easily conclude that:
- A discrete-time LTI system is stable if and only if the ROC of its system function $H(z)$ includes the unit circle, $|z|=1$.
- A causal discrete-time LTI system with rational z-transform $H(z)$ is stable if and only if all of the poles of $H(z)$ lie inside the unit circle i.e., they must all have magnitude smaller than 1 . This statement is based on the result of Slide 5.

Example: homework

- Consider a LTI system with input $x[n]$ and output $y[n]$ related with the difference equation:

$$
y[n-2]-\frac{5}{2} y[n-1]+y[n]=x[n]
$$

Determine the impulse response and its z-transform in the following three cases:

- The system is causal.
- The system is stable.
- The system is neither stable nor causal.

