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The z-transform derived from the Laplace transform.

Consider a discrete-time signal x(t) sampled every T seconds.
x(t) = x06(t) + x,6(t —T) + x,6(t — 2T) + x36(t — 3T) + -+
Recall that in the Laplace domain we have:
L{5(t)} =1
LIt —T)}=e ST
Therefore, the Laplace transform of x(t) is:
X(s) = xg + x:675T + x,675%T 4 x327537 4 ...

Now define z = e5T = e(@HO)T = ¢9TcoswT + jeT sinwT.
Finally, define

X[z =xg+ x27 4+ x327% + x3273 + -+
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z~1: the sampled period delay operator

From the Laplace time-shift property, we know that z = eS? is time
advance by T seconds (T is the sampling period).

Therefore, z71 = e~5T corresponds to one sampling period delay.

As a result, all sampled data (and discrete-time systems) can be
expressed in terms of the variable z.

More formally, the unilateral z —transform of a causal sampled
sequence:

IS given by:
X[z =x¢+ x1z27  + 2272 + x3273 + - =30 x[n]z 7", x,, = x[n]
The bilateral z —transform for any sampled sequence is:

X[z] = z x[n]z™™

n=—oo
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Laplace
transform

Fourier
transform

Discrete
Fourier
transform

Z —
transform

Laplace, Fourier and z — transforms

Definition

(00}

X(s) = jx(t)e‘“dt

— 00

(0.0)

X(w) = fx(t)e‘f“’tdt

— 00

X[T'(U()] =

Sl oo TX[nT]e /7%

T sampling period
‘Q‘O = Wy T = 27T/N0

Purpose

Converts integral-
differential
equations to

algebraic equations.

Converts finite
energy signals to
frequency domain
representation.

Converts discrete-
time signals to
discrete frequency
domain.

Converts difference
equations into

algebraic equations.

Suitable for

Continuous-time signal
and systems analysis.
Stable or unstable.

Continuous-time,
stable systems.
Convergent signals
only. Best for steady-
state.

Discrete time signals.

Discrete-time system
and signal analysis;
stable or unstable.
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Example: Find the z —transformof x| n] = y"u[n]

Find the z —transform of the causal signal y™u[n], where y is a constant.
By definition:

We apply the geometric progression formula:

1+x+x?+x3+-= x|l < 1
1—x
Therefore,
__1 0
X[Z]_l—g’ . <1
VA
i~ |z| > |yl

We notice that the z —transform exists for certain values of z. These values
form the so called Region-Of-Convergence (ROC) of the transform.
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Example: Find the z —transform of x[n| = y"u[n]cont.

Observe that a simple equation in z-domain results in an infinite sequence
of samples.

The figures below depict the signal in time (left) and the ROC, shown with
the shaded area, within the z —plane.

y*uln]
¢
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Example: Find the z —transformof x| n| = —y"u[—n — 1]

Find the z —transform of the anticausal signal —y™u[—n — 1], where y is a
constant.

By definition:
(0'e) -1 (0'0) (0'e)
X[z] = z —yMu[-n—-1]z7" = z —y"z~ z A z <E>
n=-—oo n=—oo n=1 n=1 14

() (-> )

Z

<1
14

)

Xlz] == (E) 1i5’

14

-- i (Z)
]/n=0 )/
Therefore,

VA
= = |z| < |yl

We notice that the z —transform exists for certain values of z, which consist
the complement of the ROC of the function y™u[n] with respect to the
z —plane.



Imperial College

We proved that the following two functions:
= The causal function y™u[n] and
» the anti-causal function —y™*u[—n — 1] have:
% The same analytical expression for their z —transforms.

% Complementary ROCs. More specifically, the union of their ROCS
forms the entire z —plane.

Observe that the ROC of y™u[n] is |z]| > |y].

In case that y™u[n] is part of a causal system’s impulse response, we see
that the condition |y| < 1 must hold. This is because, since lim (y)" = oo, for

Nn—->0o

ly| > 1, the system will be unstable in that case.

Therefore, in causal systems, stability requires that the ROC of the system’s
transfer function includes the circle with radius 1 centred at origin within the
z —plane. This is the so called unit circle.
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Example: Find the z —transform of 5[n] and u[n]

« By definition §[0] =1 and d[n] =0 forn # 0.

25 5[0]z° = 1

n=-—oo

« By definition u[n] =1 forn > 0.

(00} — (¢') —_ 1
X[Z] = Zn:—oou[n]z n= n=02% "= 71
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Example: Find the z —transform of cosSnu|n|

We write cosfin = %(ejﬁ" + e‘jﬁ").
From previous analysis we showed that:
yhuln] & 7=, |zl > Iyl

Hence,

etiFnyn] & 1z| > |e/F| =1

z—etJp’

Therefore,

X[Z] _ 1[ z z z(z—cosf)

= : —| = z[>1
2 lz—elB * z—e~JB zz—chosB+1’| |
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z —transform of 9 Impuises

« Find the z —transform of the signal depicted in the figure.

l lx[n]

il

of 1 2 3 4 = = ,_ 5

« By definition:

4
1 1 1 1

Xzl = 14—+t =) ()=
Z Z Z Z o

1—(2_1)5_ Z
1—2z71  z-1

(1-27°)
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z —ftransform Tahle

No.

x[n]
é[n — n]

uln]

nuln]

n’uln]

y"uln]
" luln — 1]

ny"uln]

X[z]

(z —1)?
z(z+ 1)
(z—1)*
z2(Z2+4z+1)
(z—-1)*
2=y
1
=Y
Yz
(z —y¥
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Z —transform Tahle
No.  x[n] X[z]
— 13l = D » = e 1
10 n(n )(n oo (n—m+ )y"u[n] Z
}’.rum! (Z . y)m-l—l
z(z = |y| cos B)

lla |lv|" cos Bn un] -

yI"cos B Z— @lylcos Bz + Iy

. zly|sin B

11b ly|" sin Bnuln] - -

T = @lylcos f)z + 1P

rzlzcos 8 — |y|cos (B — 6)]

12a rlv|" cos (Bn + @)un] -~ =

Iy[* cos (B 2= @lylcos Bz + 7P

. 0.5re’?)z 0.5re ")z
12b rlyl cos (Bn +O)uln]l  y = |yle POTE B e )
z—vy 2=
z(Az + B)

12¢ " cos + 6

rly[ cos(fn +6)uln] 22+ 2az + |y|?

—a Aa — B

o \/A-Iy-+B-—2AaB 8 = cos-! P

F}"|1“ﬂ2 4 Au"|y|3—a3
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Inverse z —transform

As with other transforms, inverse z —transform is used to derive x[n]
from X|[z], and is formally defined as:
1

= T X[z]z" tdz

x|n]

Here the symbol ¢ indicates an integration in counter-clockwise

direction around a closed path within the complex z-plane (known as
contour integral).

Such contour integral is difficult to evaluate (but could be done using
Cauchy’s residue theorem), therefore we often use other techniques to
obtain the inverse z —transform.

One such technique is to use the z —transform pairs Table shown in the
last two slides with partial fraction expansion.
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Find the inverse z —transform in the case of real unique poles

* Find the inverse z —transform of X|[z] = bz— 10
(z—2)(Z-3)
Solution
X[z] 8z — 19 (19) 3/2 5/3
Z Z — T T4
=674 +

Z =Z(Z—2)(Z—3)_ Z z—2 z-—3

Xzl = -5 +3(5) +3(5)

By using the simple transforms that we derived previously we get:
19 3 5
x[n] = ——06[n] + [E 2" + 53”] uln]



Imperial College

Find the inverse z —transform in the case of real repeated poles

z(2z%-11z+12)
(z—-1)(z-2)3

* Find the inverse z —transform of X[z] =

Solution

X[z] _ (2z%-11z+12) _ k Q | _a @
z  (z-1)(z-2)3  z-1 (2-2)3  (z-2)?2 (z-2)

= We use the so called covering method to find k and a,
(2z2 — 11z + 12)

( Y(z —2)3
(2z% — 11z + 12)
(z — 1)(3-,,2?3 s

z=1

Ag =

The shaded areas above indicate that they are excluded from the entire
function when the specific value of z is applied.
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Find the inverse z —transform in the case of real repeated poles cont.

2_
. Find the inverse z —transform of X[z] = 222 —112+12)

(z—1)(z-2)3
Solution
X[z] _ (2z%-11z+12) _ -3 -2 I
z  (z-1)(z-2)3  z-1 (2-2)3  (z-2)?2 (z-2)
= To find a, we multiply both sides of the above equation with z and let
Z — 00,
0=—-3-0+4+0+a,>a,=3
= Tofinda, letz— 0.
2oz 8 254 =1
8 4 4 2
X[z] (2z%-11z+12) -3 2 1 3
pu— o —_— — z
Z (z—-1)(z-2)3 z—1 (z-2)3 (z-2)%2 (z-2)
-3z 2z VA 3z
X[Z] T z-1 (z-2)3 B (z—2)2 + (z—2)
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Find the inverse z —transform in the case of real repeated poles cont.

-3z . 2z _ Z n 3z
z—1 (z-2)3 (z-2)2 (z-2)
We use the following properties:

X[z] =

= yMuln] Z_

z=y
n(n—-1)(n-2)..(n-m+1) 4, Z
e viuln] & ——
2z _ . nn-1) p _ n(n—l). n
[ (Z 2)3 ( )(Z 2)2+1 <3( 2) 2291 y U,[Tl] - 2 8 2 u[n]

Therefore,
x[n] =[-3-1" — 2@ - 2" _2 2"+ 3 - 2™ uln]

— [3 +%(n2 +n— 12)2"] u[n]
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Find the inverse z —transform in the case of complex poles

Find the inverse z —transform of X[z] = —2cet7)
(z—1)(z#—6z+25)

Solution
2z(3z 4+ 17)

(z—1)(z-3—-j4)(z—-3+j4)
X[z] _ (2z%-11z+12) _ k ao a; a,
z  (z-1D(z-2)3 z-1 + (z—2)3 + (z—2)>2 + (z—2)
Whenever we encounter a complex pole we need to use a special partial
fraction method called guadratic factors method.
X[z] 2(3z+17) 2 Az+B

z  (z-1)(z2-6z+25) z-1 2z2-62z+25
We multiply both sides with z and let z — oo:
0=24+A=>A4A=-2

X[z] =

Therefore,

2(3z+17) 2 —27+B
(z—1)(z2-6z+25) z-1 2z2-6z+25
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Find the inverse z —transform in the case of complex poles cont.

2(3z+17) 2 —27+B
(z—1)(z%—62z+25) z—1 z?%-6z+25

To find B we let z = 0:

- 24+25B=16
25 25
X[z] _ 2 2—22+16 N [Z] _ 2Z z(2—22+16)
z z—1 z“—6z+25 z—-1 Z“—6z+25
We use the following property:
Z(Az+B)

rly|™* cos(fn + 6) u[n] withA = -2, B =16,a = -3, |y| =5.

z%2+2az+|y|?

= \/A2|y|2+B2—2AaB _ \/4-25+256—2-(_2)'(_3)'16 =3.2,8 = cos 12 = 0.927rad,

ly|?2—a? 25-9 lyl
. -1 Aa—B _
6 = tan AT 2.246rad.

Therefore, x[n] = [2 + 3.2 c0s(0.927n — 2.246)]u[n]
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Manping from s —plane to z —plane

: ; ; 2
Since z = 5T = e(@+j®)T = 0TojoT \where T ===, we can map the

Wg

s —plane to the z —plane as below.

For 0 =0, s =jw and z = e/“T, Therefore, the imaginary axis of the
s —plane is mapped to the unit circle on the z —plane.

jﬁ;}: Im(s) II’I]J:.E':I
"
jo./2 .
Jeo
Re(z
Refs)=0 1 Q = wi) *1 ")

—jo_[2
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Manping from s —plane to z —plane cont.

For o <0, |z| = e°T < 1. Therefore, the left half of the s —plane is mapped
to the inner part of the unit circle on the z —plane (turquoise areas).

Note that we normally use Cartesian coordinates for the s — plane
(s = 0 + jw) and polar coordinates for the z —plane (z = re/®).

Jj@ Im(z)
5 piano |
Jjo. /2 +1
Rels)=0 -1 B Rel?)

—jw [ 2 = |
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Manping from s —plane to z —plane cont.

« For ¢ >0, |z| =e’" >1. Therefore, the right half of the s —plane is
mapped to the outer part of the unit circle on the z —plane (pink areas).

Im(z
& .
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Find the inverse z —transform in the case of complex poles

« Using the results of today’s Lecture and also Lecture 9 on stability of
causal continuous-time systems and the mapping from the s —plane to
the z —plane, we can easily conclude that:

= A discrete-time LTI system is stable if and only if the ROC of its
system function H(z) includes the unit circle, |z| = 1.

= A causal discrete-time LTI system with rational z —transform H(z) is
stable if and only if all of the poles of H(z) lie inside the unit circle —
i.e., they must all have magnitude smaller than 1. This statement is
based on the result of Slide 5.
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« Consider a LTI system with input x[n] and output y[n] related with the
difference equation:

5
y[n —2] - Ey[n — 1] + y[n] = x[n]

Determine the impulse response and its z —transform in the following
three cases:

= The system is causal.
= The system is stable.
= The system is neither stable nor causal.



