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• Consider a discrete-time signal 𝑥(𝑡) sampled every 𝑇 seconds.

𝑥 𝑡 = 𝑥0𝛿 𝑡 + 𝑥1𝛿 𝑡 − 𝑇 + 𝑥2𝛿 𝑡 − 2𝑇 + 𝑥3𝛿 𝑡 − 3𝑇 +⋯

• Recall that in the Laplace domain we have:

ℒ 𝛿 𝑡 = 1
ℒ 𝛿 𝑡 − 𝑇 = 𝑒−𝑠𝑇

• Therefore, the Laplace transform of 𝑥 𝑡 is:

𝑋 𝑠 = 𝑥0 + 𝑥1𝑒
−𝑠𝑇 + 𝑥2𝑒

−𝑠2𝑇 + 𝑥3𝑒
−𝑠3𝑇 +⋯

• Now define 𝑧 = 𝑒𝑠𝑇 = 𝑒(𝜎+𝑗𝜔)𝑇 = 𝑒𝜎𝑇cos𝜔𝑇 + 𝑗𝑒𝜎𝑇sin𝜔𝑇.

• Finally, define

𝑋[𝑧] = 𝑥0 + 𝑥1𝑧
−1 + 𝑥2𝑧

−2 + 𝑥3𝑧
−3 +⋯

The z-transform derived from the Laplace transform.



• From the Laplace time-shift property, we know that 𝑧 = 𝑒𝑠𝑇 is time

advance by 𝑇 seconds (𝑇 is the sampling period).

• Therefore, 𝑧−1 = 𝑒−𝑠𝑇 corresponds to one sampling period delay.

• As a result, all sampled data (and discrete-time systems) can be

expressed in terms of the variable 𝑧.

• More formally, the unilateral 𝒛 − transform of a causal sampled

sequence:

𝑥 𝑛 = {𝑥 0 , 𝑥 1 , 𝑥 2 , 𝑥 3 , … }

is given by:

𝑋[𝑧] = 𝑥0 + 𝑥1𝑧
−1 + 𝑥2𝑧

−2 + 𝑥3𝑧
−3 +⋯ = σ𝑛=0

∞ 𝑥[𝑛]𝑧−𝑛, 𝑥𝑛 = 𝑥[𝑛]

• The bilateral 𝒛 −transform for any sampled sequence is:

𝑋[𝑧] = ෍

𝑛=−∞

∞

𝑥[𝑛]𝑧−𝑛

𝒛−𝟏: the sampled period delay operator



Definition Purpose Suitable for

Laplace

transform 𝑿 𝒔 = න

−∞

∞

𝒙(𝒕)𝒆−𝒔𝒕𝒅𝒕
Converts integral-

differential 

equations to 

algebraic equations.

Continuous-time signal 

and systems analysis. 

Stable or unstable.

Fourier

transform 𝑿(𝝎) = න

−∞

∞

𝒙(𝒕)𝒆−𝒋𝝎𝒕𝒅𝒕
Converts finite 

energy signals to 

frequency domain 

representation.

Continuous-time, 

stable systems. 

Convergent signals 

only. Best for steady-

state.

Discrete 

Fourier

transform

𝑿[𝒓𝝎𝟎] =

σ𝒏=−∞
𝑵𝟎−𝟏 𝑻𝒙[𝒏𝑻]𝒆−𝒋𝒏𝒓𝛀𝟎

𝑇 sampling period

Ω0 = 𝜔0 𝑇 = 2𝜋/𝑁0

Converts  discrete-

time signals to 

discrete frequency 

domain.

Discrete time signals.

𝑧 −
transform 𝑿[𝒛] = ෍

𝒏=−∞

∞

𝒙[𝒏]𝒛−𝒏
Converts difference 

equations into 

algebraic equations.

Discrete-time system 

and signal analysis; 

stable or unstable.

Laplace, Fourier and 𝒛 − transforms



• Find the 𝑧 −transform of the causal signal 𝛾𝑛𝑢[𝑛], where 𝛾 is a constant.

• By definition:

𝑋[𝑧] = ෍

𝑛=−∞

∞

𝛾𝑛𝑢 𝑛 𝑧−𝑛 =෍

𝑛=0

∞

𝛾𝑛𝑧−𝑛 = ෍

𝑛=0

∞
𝛾

𝑧

𝑛

= 1 +
𝛾

𝑧
+

𝛾

𝑧

2

+
𝛾

𝑧

3

+⋯

• We apply the geometric progression formula:

1 + 𝑥 + 𝑥2 + 𝑥3 +⋯ =
1

1 − 𝑥
, 𝑥 < 1

• Therefore,

𝑋[𝑧] =
1

1−
𝛾

𝑧

, 
𝛾

𝑧
< 1

=
𝑧

𝑧−𝛾
, 𝑧 > 𝛾

• We notice that the 𝑧 −transform exists for certain values of 𝑧. These values

form the so called Region-Of-Convergence (ROC) of the transform.

Example: Find the 𝒛 −transform of 𝒙 𝒏 = 𝜸𝒏𝒖[𝒏]



• Observe that a simple equation in 𝑧-domain results in an infinite sequence

of samples.

• The figures below depict the signal in time (left) and the ROC, shown with

the shaded area, within the 𝑧 −plane.

Example: Find the 𝒛 −transform of 𝒙 𝒏 = 𝜸𝒏𝒖[𝒏]cont.



• Find the 𝑧 −transform of the anticausal signal −𝛾𝑛𝑢[−𝑛 − 1], where 𝛾 is a

constant.

• By definition:

𝑋[𝑧] = ෍

𝑛=−∞

∞

−𝛾𝑛𝑢 −𝑛 − 1 𝑧−𝑛 = ෍

𝑛=−∞

−1

−𝛾𝑛𝑧−𝑛 = −෍

𝑛=1

∞

𝛾−𝑛𝑧𝑛 = −෍

𝑛=1

∞
𝑧

𝛾

𝑛

= −
𝑧

𝛾
෍

𝑛=0

∞
𝑧

𝛾

𝑛

= −
𝑧

𝛾
1 +

𝑧

𝛾
+

𝑧

𝛾

2

+
𝑧

𝛾

3

+⋯

• Therefore,

𝑋[𝑧] = −
𝑧

𝛾

1

1−
𝑧

𝛾

, 
𝑧

𝛾
< 1

=
𝑧

𝑧−𝛾
, 𝑧 < 𝛾

• We notice that the 𝑧 −transform exists for certain values of 𝑧, which consist

the complement of the ROC of the function 𝛾𝑛𝑢[𝑛] with respect to the

𝑧 −plane.

Example: Find the 𝒛 −transform of 𝒙 𝒏 = −𝜸𝒏𝒖[−𝒏 − 𝟏]



• We proved that the following two functions:

▪ The causal function 𝛾𝑛𝑢 𝑛 and

▪ the anti-causal function −𝛾𝑛𝑢[−𝑛 − 1] have:

❖ The same analytical expression for their 𝑧 −transforms.

❖ Complementary ROCs. More specifically, the union of their ROCS 

forms the entire 𝑧 −plane.

• Observe that the ROC of 𝛾𝑛𝑢 𝑛 is 𝑧 > 𝛾 .

• In case that 𝛾𝑛𝑢 𝑛 is part of a causal system’s impulse response, we see 

that the condition 𝛾 < 1 must hold. This is because, since lim
𝑛→∞

𝛾 𝑛 = ∞, for 

𝛾 > 1, the system will be unstable in that case.

• Therefore, in causal systems, stability requires that the ROC of the system’s 

transfer function includes the circle with radius 1 centred at origin within the 

𝑧 −plane. This is the so called unit circle.

Summary of previous examples



• By definition 𝛿 0 = 1 and 𝛿 𝑛 = 0 for 𝑛 ≠ 0.

𝑋[𝑧] = ෍

𝑛=−∞

∞

𝛿 𝑛 𝑧−𝑛 = 𝛿 0 𝑧−0 = 1

• By definition 𝑢 𝑛 = 1 for 𝑛 ≥ 0.

𝑋[𝑧] = σ𝑛=−∞
∞ 𝑢 𝑛 𝑧−𝑛 = σ𝑛=0

∞ 𝑧−𝑛 =
1

1−
1

𝑧

, 
1

𝑧
< 1

=
𝑧

𝑧−1
, 𝑧 > 1

Example: Find the 𝒛 −transform of 𝜹[𝒏] and 𝒖[𝒏]



• We write cos𝛽𝑛 =
1

2
𝑒𝑗𝛽𝑛 + 𝑒−𝑗𝛽𝑛 .

• From previous analysis we showed that:

𝛾𝑛𝑢[𝑛] ⇔
𝑧

𝑧−𝛾
, 𝑧 > 𝛾

• Hence,

𝑒±𝑗𝛽𝑛𝑢[𝑛] ⇔
𝑧

𝑧−𝑒±𝑗𝛽
, 𝑧 > 𝑒±𝑗𝛽 = 1

• Therefore,

𝑋 𝑧 =
1

2

𝑧

𝑧−𝑒𝑗𝛽
+

𝑧

𝑧−𝑒−𝑗𝛽
=

𝑧(𝑧−cos𝛽)

𝑧2−2𝑧cos𝛽+1
, 𝑧 > 1

Example: Find the 𝒛 −transform of 𝐜𝐨𝐬𝜷𝒏𝒖[𝒏]



• Find the 𝑧 −transform of the signal depicted in the figure.

• By definition:

𝑋 𝑧 = 1 +
1

𝑧
+
1`

𝑧2
+
1

𝑧3
+
1

𝑧4
= ෍

𝑘=0

4

𝑧−1 𝑘 =
1 − 𝑧−1 5

1 − 𝑧−1
=

𝑧

𝑧 − 1
1 − 𝑧−5

𝒛 −transform of 5 impulses



𝒛 −transform Table

No. 𝒙[𝒏] 𝑿[𝒛]



𝒛 −transform Table

No. 𝒙[𝒏] 𝑿[𝒛]



Inverse 𝒛 −transform

• As with other transforms, inverse 𝑧 −transform is used to derive 𝑥[𝑛]
from 𝑋[𝑧], and is formally defined as:

𝑥 𝑛 =
1

2𝜋𝑗
ර𝑋[𝑧]𝑧𝑛−1𝑑𝑧

• Here the symbol ׯ indicates an integration in counter-clockwise

direction around a closed path within the complex 𝑧-plane (known as

contour integral).

• Such contour integral is difficult to evaluate (but could be done using

Cauchy’s residue theorem), therefore we often use other techniques to

obtain the inverse 𝑧 −transform.

• One such technique is to use the 𝑧 −transform pairs Table shown in the

last two slides with partial fraction expansion.



Find the inverse 𝒛 −transform in the case of real unique poles

• Find the inverse 𝑧 −transform of 𝑋 𝑧 =
8𝑧−19

(𝑧−2)(𝑍−3)

Solution

𝑋[𝑧]

𝑧
=

8𝑧 − 19

𝑧(𝑧 − 2)(𝑍 − 3)
=
(−

19
6
)

𝑧
+

3/2

𝑧 − 2
+

5/3

𝑧 − 3

𝑋 𝑧 = −
19

6
+

3

2

𝑧

𝑧−2
+

5

3

𝑧

𝑧−3

By using the simple transforms that we derived previously we get:

𝑥 𝑛 = −
19

6
𝛿[𝑛] +

3

2
2𝑛 +

5

3
3𝑛 𝑢[𝑛]



Find the inverse 𝒛 −transform in the case of real repeated poles

• Find the inverse 𝑧 −transform of 𝑋 𝑧 =
𝑧(2𝑧2−11𝑧+12)

(𝑧−1)(𝑧−2)3

Solution

𝑋[𝑧]

𝑧
=

(2𝑧2−11𝑧+12)

(𝑧−1)(𝑧−2)3
=

𝑘

𝑧−1
+

𝑎0

(𝑧−2)3
+

𝑎1

(𝑧−2)2
+

𝑎2

(𝑧−2)

▪ We use the so called covering method to find 𝑘 and 𝑎0

𝑘 = อ
(2𝑧2 − 11𝑧 + 12)

(𝑧 − 1)(𝑧 − 2)3
𝑧=1

= −3

𝑎0 = อ
(2𝑧2 − 11𝑧 + 12)

(𝑧 − 1)(𝑧 − 2)3
𝑧=2

= −2

The shaded areas above indicate that they are excluded from the entire

function when the specific value of 𝑧 is applied.



Find the inverse 𝒛 −transform in the case of real repeated poles cont.

• Find the inverse 𝑧 −transform of 𝑋 𝑧 =
𝑧(2𝑧2−11𝑧+12)

(𝑧−1)(𝑧−2)3

Solution

𝑋[𝑧]

𝑧
=

(2𝑧2−11𝑧+12)

(𝑧−1)(𝑧−2)3
=

−3

𝑧−1
+

−2

(𝑧−2)3
+

𝑎1

(𝑧−2)2
+

𝑎2

(𝑧−2)

▪ To find 𝑎2 we multiply both sides of the above equation with 𝑧 and let 

𝑧 → ∞.

0 = −3 − 0 + 0 + 𝑎2 ⇒ 𝑎2 = 3

▪ To find 𝑎1 let 𝑧 → 0.

12

8
= 3 +

1

4
+

𝑎1

4
−

3

2
⇒ 𝑎1 = −1

𝑋[𝑧]

𝑧
=

(2𝑧2−11𝑧+12)

(𝑧−1)(𝑧−2)3
=

−3

𝑧−1
−

2

𝑧−2 3 −
1

(𝑧−2)2
+

3

(𝑧−2)
⇒

𝑋 𝑧 =
−3𝑧

𝑧−1
−

2𝑧

𝑧−2 3 −
𝑧

(𝑧−2)2
+

3𝑧

(𝑧−2)



Find the inverse 𝒛 −transform in the case of real repeated poles cont.

𝑋 𝑧 =
−3𝑧

𝑧−1
−

2𝑧

𝑧−2 3 −
𝑧

(𝑧−2)2
+

3𝑧

(𝑧−2)

• We use the following properties:

▪ 𝛾𝑛𝑢[𝑛] ⇔
𝑧

𝑧−𝛾

▪
𝑛(𝑛−1)(𝑛−2)…(𝑛−𝑚+1)

𝛾𝑚𝑚!
𝛾𝑛𝑢 𝑛 ⇔

𝑧

(𝑧−𝛾)𝑚+1

[−
2𝑧

𝑧−2 3 = (−2)
𝑧

𝑧−2 2+1 ⇔ (−2)
𝑛(𝑛−1)

222!
𝛾𝑛𝑢 𝑛 = −2

𝑛(𝑛−1)

8
∙ 2𝑛𝑢[𝑛]

• Therefore,

𝑥 𝑛 = [−3 ∙ 1𝑛 − 2
𝑛(𝑛−1)

8
∙ 2𝑛 −

𝑛

2
∙ 2𝑛 + 3 ∙ 2𝑛]𝑢[𝑛]

= − 3 +
1

4
𝑛2 + 𝑛 − 12 2𝑛 𝑢[𝑛]



Find the inverse 𝒛 −transform in the case of complex poles

• Find the inverse 𝑧 −transform of 𝑋 𝑧 =
2𝑧(3𝑧+17)

(𝑧−1)(𝑧2−6𝑧+25)

Solution

𝑋 𝑧 =
2𝑧(3𝑧 + 17)

(𝑧 − 1)(𝑧 − 3 − 𝑗4)(𝑧 − 3 + 𝑗4)

𝑋[𝑧]

𝑧
=

(2𝑧2−11𝑧+12)

(𝑧−1)(𝑧−2)3
=

𝑘

𝑧−1
+

𝑎0

(𝑧−2)3
+

𝑎1

(𝑧−2)2
+

𝑎2

(𝑧−2)

Whenever we encounter a complex pole we need to use a special partial 

fraction method called quadratic factors method.

𝑋[𝑧]

𝑧
=

2(3𝑧+17)

(𝑧−1)(𝑧2−6𝑧+25)
=

2

𝑧−1
+

𝐴𝑧+𝐵

𝑧2−6𝑧+25

We multiply both sides with 𝑧 and let 𝑧 → ∞:

0 = 2 + 𝐴 ⇒ 𝐴 = −2

Therefore,

2(3𝑧+17)

(𝑧−1)(𝑧2−6𝑧+25)
=

2

𝑧−1
+

−2𝑧+𝐵

𝑧2−6𝑧+25



Find the inverse 𝒛 −transform in the case of complex poles cont.

2(3𝑧+17)

(𝑧−1)(𝑧2−6𝑧+25)
=

2

𝑧−1
+

−2𝑧+𝐵

𝑧2−6𝑧+25

To find 𝐵 we let 𝑧 = 0:

−34

25
= −2 +

𝐵

25
⇒ 𝐵 = 16

𝑋[𝑧]

𝑧
=

2

𝑧−1
+

−2𝑧+16

𝑧2−6𝑧+25
⇒ 𝑋 𝑧 =

2𝑧

𝑧−1
+

𝑧(−2𝑧+16)

𝑧2−6𝑧+25

• We use the following property:

𝑟 𝛾 𝑛 cos 𝛽𝑛 + 𝜃 𝑢[𝑛] ⇔
𝑧(𝐴𝑧+𝐵)

𝑧2+2𝑎𝑧+ 𝛾 2 with 𝐴 = −2, 𝐵 = 16, 𝑎 = −3, 𝛾 = 5.

𝑟 =
𝐴2 𝛾 2+𝐵2−2𝐴𝑎𝐵

𝛾 2−𝑎2
=

4∙25+256−2∙(−2)∙(−3)∙16

25−9
= 3.2, 𝛽 = cos−1

−𝑎

𝛾
= 0.927𝑟𝑎𝑑,

𝜃 = tan−1
𝐴𝑎−𝐵

𝐴 𝛾 2−𝑎2
= −2.246𝑟𝑎𝑑.

Therefore, 𝑥 𝑛 = [2 + 3.2 cos 0.927𝑛 − 2.246 ]𝑢[𝑛]



• Since 𝑧 = 𝑒𝑠𝑇 = 𝑒 𝜎+𝑗𝜔 𝑇 = 𝑒𝜎𝑇𝑒𝑗𝜔𝑇 where 𝑇 =
2𝜋

𝜔𝑠
, we can map the

𝑠 −plane to the 𝑧 −plane as below.

▪ For 𝜎 = 0, 𝑠 = 𝑗𝜔 and 𝑧 = 𝑒𝑗𝜔𝑇. Therefore, the imaginary axis of the

𝑠 −plane is mapped to the unit circle on the 𝑧 −plane.

= Im(s)

Mapping from 𝑠 −plane to 𝑧 −plane 



Mapping from 𝑠 −plane to 𝑧 −plane cont. 

• For 𝜎 < 0, 𝑧 = 𝑒𝜎𝑇 < 1. Therefore, the left half of the 𝑠 −plane is mapped

to the inner part of the unit circle on the 𝑧 −plane (turquoise areas).

• Note that we normally use Cartesian coordinates for the 𝑠 − plane

𝑠 = 𝜎 + 𝑗𝜔 and polar coordinates for the 𝑧 −plane (𝑧 = 𝑟𝑒𝑗𝜔).



Mapping from 𝑠 −plane to 𝑧 −plane cont. 

• For 𝜎 > 0 , 𝑧 = 𝑒𝜎𝑇 > 1 . Therefore, the right half of the 𝑠 −plane is

mapped to the outer part of the unit circle on the 𝑧 −plane (pink areas).



Find the inverse 𝒛 −transform in the case of complex poles

• Using the results of today’s Lecture and also Lecture 9 on stability of
causal continuous-time systems and the mapping from the 𝑠 −plane to
the 𝑧 −plane, we can easily conclude that:

▪ A discrete-time LTI system is stable if and only if the ROC of its
system function 𝐻(𝑧) includes the unit circle, 𝑧 = 1.

▪ A causal discrete-time LTI system with rational 𝑧 −transform 𝐻(𝑧) is
stable if and only if all of the poles of 𝐻(𝑧) lie inside the unit circle –
i.e., they must all have magnitude smaller than 1. This statement is
based on the result of Slide 5.



Example: homework

• Consider a LTI system with input 𝑥[𝑛] and output 𝑦[𝑛] related with the
difference equation:

𝑦 𝑛 − 2 −
5

2
𝑦 𝑛 − 1 + 𝑦 𝑛 = 𝑥[𝑛]

Determine the impulse response and its 𝑧 −transform in the following
three cases:

▪ The system is causal.

▪ The system is stable.

▪ The system is neither stable nor causal.


