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• We wish to perform spectral analysis using digital computers.

• Therefore, we must somehow sample the Fourier transform of the signal.

• In this Lecture we will compute a discrete version of the Fourier transform

on the sampled, finite-duration signal. The transform that we will derive is

known as Discrete Fourier Transform (DFT).

• The goal is to understand how DFT is related to the original Fourier

transform.

• We showed that a signal bandlimited to 𝐵𝐻𝑧 can be reconstructed from

signal samples if they are obtained at a rate of 𝑓𝑠 > 2𝐵 samples per second.

• Note that the signal spectrum exists over the frequency range (in 𝐻𝑧) from

− 𝐵 to 𝐵.

• The interval 2𝐵 is called spectral width.

Note the difference between spectral width (2𝐵) and bandwidth (𝐵).

• In time sampling theorem: 𝑓𝑠 > 2𝐵 or 𝑓𝑠 >(spectral width).

Introduction. Time sampling theorem resume.



• Consider a time-limited signal 𝑥(𝑡) with a spectrum 𝑋(𝜔).

• In general, a time-limited signal is 0 for 𝑡 < 𝑇1 and 𝑡 > 𝑇2. The duration of

the signal is 𝜏 = 𝑇2 − 𝑇1. Below we assume that 𝑇1 = 0.

• Recall that 𝑋 𝜔 = ∞−׬
∞
𝑥 𝑡 𝑒−𝑗𝜔𝑡𝑑𝑡 = 0׬

𝜏
𝑥 𝑡 𝑒−𝑗𝜔𝑡𝑑𝑡.

• The Fourier transform 𝑋(𝜔) is assumed real for simplicity.

Spectral sampling theorem

The spectrum 𝑋(𝜔) of a signal 𝑥(𝑡) , time-limited to a duration of

𝜏 seconds, can be reconstructed from the samples of 𝑋(𝜔) taken at a rate

𝑅 samples per 𝐻𝑧, where 𝑅 > 𝜏 (the signal width or duration in seconds).

Time sampling theorem has a dual: Spectral sampling theorem



• We now construct the periodic signal 𝑥𝑇0(𝑡). This is a periodic extension

of 𝑥(𝑡) with period 𝑇0 > 𝜏.

• This periodic signal can be expressed using Fourier series.

𝑥𝑇0 𝑡 = σ𝑛=−∞
𝑛=∞ 𝐷𝑛𝑒

𝑗𝑛𝜔0𝑡, 𝜔0 =
2𝜋

𝑇0

𝐷𝑛 =
1

𝑇0
0׬
𝑇0 𝑥(𝑡) 𝑒−𝑗𝑛𝜔0𝑡𝑑𝑡 =

1

𝑇0
0׬
𝜏
𝑥(𝑡) 𝑒−𝑗𝑛𝜔0𝑡𝑑𝑡 =

1

𝑇0
𝑋(𝑛𝜔0)

⇒ 𝑥 𝑡 = σ𝑛=−∞
𝑛=∞ 1

𝑇0
𝑋(𝑛𝜔0)𝑒

𝑗𝑛𝜔0𝑡, 𝜔0 =
2𝜋

𝑇0

• The result indicates that the coefficients of the Fourier series for 𝑥𝑇0 𝑡

are the values of 𝑋(𝜔) taken at integer multiples of 𝜔0 and scaled by
1

𝑇0
.

• We call “spectrum of a periodic signal” the weights of the exponential

terms in its Fourier series representation.

• The above implies that the “spectrum” of the periodic signal 𝑥𝑇0 𝑡 is the

sampled version of spectrum 𝑋 𝜔 .

Spectral sampling theorem



• The spectrum of the periodic signal 𝑥𝑇0 𝑡 is the sampled version of

spectrum 𝑋 𝜔 (see figure below).

▪ If successive cycles of 𝑥𝑇0 𝑡 do not overlap, 𝑥(𝑡) can be recovered

from 𝑥𝑇0 𝑡 .

▪ If we know 𝑥(𝑡) we can find 𝑋(𝜔).
▪ The above imply that 𝑿(𝝎) can be reconstructed from its samples.

• These samples are separated by the so called fundamental frequency 𝑓0 =
1

𝑇0
𝐻𝑧 or 𝜔0 = 2𝜋𝑓0rads/s of the periodic signal 𝑥𝑇0 𝑡 .

• Therefore, the condition for recovery is 𝑇0 > 𝜏 ⇒ 𝑓0 =
1

𝑇0
<

1

𝜏
𝐻𝑧.

Spectral sampling theorem cont.



• To reconstruct the spectrum 𝑋(𝜔) from the samples of 𝑋(𝜔), the samples

should be taken at frequency intervals 𝑓0 <
1

𝜏
𝐻𝑧. If the sampling rate is 𝑅

frequency samples/Hz we have:

𝑅 =
1

𝑓0
> 𝜏 frequency samples/Hz

• In the previous lecture we proved that the continuous version of a signal

can be recovered from its sampled version through the so called signal

interpolation formula:

𝑥 𝑡 = σ𝑛 𝑥 𝑛𝑇𝑠 ℎ 𝑡 − 𝑛𝑇𝑠 = σ𝑛 𝑥 𝑛𝑇𝑠 sinc
𝜋𝑡

𝑇𝑠
− 𝑛𝜋

• We use the dual of the approach employed to derive the signal

interpolation formula shown above, to obtain the spectral interpolation

formula as follows. We assume that 𝑥(𝑡) is time-limited to 𝜏 and centred at

𝑇𝑐. We can prove that:

𝑋(𝜔) = σ𝑛=−∞𝑋 𝑛𝜔0 sinc
𝜔𝑇0

2
− 𝑛𝜋 𝑒−𝑗(𝜔−𝑛𝜔0)𝑇𝑐, 𝜔0 =

2𝜋

𝑇0
, 𝑇0 > 𝜏

Spectral interpolation formula



• We know that 𝑥𝑇0 𝑡 = σ𝑛=−∞
𝑛=∞ 𝐷𝑛𝑒

𝑗𝑛𝜔0𝑡, 𝜔0 =
2𝜋

𝑇0

• Therefore, ℱ 𝑥𝑇0 𝑡 = 2𝜋 σ𝑛=−∞
𝑛=∞ 𝐷𝑛 𝛿(𝜔 − 𝑛𝜔0)

[It is easier to prove that ℱ−1 2𝜋 σ𝑛=−∞
𝑛=∞ 𝐷𝑛 𝛿 𝜔 − 𝑛𝜔0 = 𝑥𝑇0 𝑡 ]

• We can write 𝑥 𝑡 = 𝑥𝑇0 𝑡 ∙ rect
𝑡−𝑻𝒄

𝑇0
(1)

[We were given that 𝑥(𝑡) is centred at 𝑻𝒄.]

• We know that ℱ rect
𝑡

𝑇0
= 𝑇0sinc

𝜔𝑇0

2
.

• Therefore, ℱ rect
𝑡−𝑇𝑐

𝑇0
= 𝑇0sinc

𝜔𝑇0

2
𝑒−𝑗𝜔𝑇𝑐.

• From (1) we see that 𝑋 𝜔 =
1

2𝜋
ℱ 𝑥𝑇0 𝑡 ∗ ℱ rect

𝑡−𝑇𝑐

𝑇0

• 𝑋 𝜔 =
1

2𝜋
2𝜋 σ𝑛=−∞

𝑛=∞ 𝐷𝑛 𝛿(𝜔 − 𝑛𝜔0) ∗ 𝑇0sinc
𝜔𝑇0

2
𝑒−𝑗𝜔𝑇𝑐

𝑋(𝜔) = σ𝑛=−∞𝐷𝑛𝑇0sinc
(𝜔−𝑛𝜔0)𝑇0

2
𝑒−𝑗(𝜔−𝑛𝜔0)𝑇𝑐, 𝜔0 =

2𝜋

𝑇0
, 𝑇0 > 𝜏

𝑋(𝜔) = ෍

𝑛=−∞

𝑋 𝑛𝜔0 sinc
𝜔𝑇0
2

− 𝑛𝜋 𝑒−𝑗(𝜔−𝑛𝜔0)𝑇𝑐

Spectral interpolation formula: Proof.



• The numerical computation of the Fourier transform requires samples of

𝑥(𝑡) since computers can work only with discrete values.

• Furthermore, the Fourier transform can only be computed at some discrete

values of 𝜔.

• The goal of what follows is to relate the samples of 𝑿(𝝎) with the

samples of 𝒙(𝒕).
• Consider a time-limited signal 𝑥 𝑡 . Its spectrum 𝑋(𝜔) will not be

bandlimited (try to think why). In other words aliasing after sampling

cannot be avoided.

• The spectrum ത𝑋(𝜔) of the sampled signal ҧ𝑥(𝑡) consist of 𝑋(𝜔) repeating

every 𝑓𝑠𝐻𝑧 with 𝑓𝑠 =
1

𝑇
(note that 𝑇 is the same as 𝑇𝑠 of previous lecture).

Discrete Fourier Transform DFT 



• Suppose now that the sampled signal ҧ𝑥(𝑡) is repeated periodically every

𝑇0 seconds.

• According to the spectral sampling theorem, this operation results in

sampling the spectrum at a rate of 𝑇0 samples/𝐻𝑧. This means that the

samples are spaced at 𝑓0 =
1

𝑇0
𝐻𝑧.

• Therefore, when a signal is sampled and periodically repeated, its

spectrum is also sampled and periodically repeated.

• The goal of what follows is to relate the samples of 𝑋(𝜔) with the samples

of 𝑥(𝑡).

Discrete Fourier Transform DFT cont. 



• The number of samples of the discrete signal in one period 𝑇0 is 𝑁0 =
𝑇0

𝑇

(figure below left).

• The number of samples of the discrete spectrum in one period is 𝑁0
′ =

𝑓𝑠

𝑓0
.

• We see that 𝑁0
′ =

𝑓𝑠

𝑓0
=

1

𝑇
1

𝑇0

=
𝑇0

𝑇
= 𝑁0.

• This is an interesting observation: the number of samples in a period

of time is identical to the number of samples in a period of frequency.

Discrete Fourier Transform DFT cont. 



• Since 𝑋(𝜔) is not bandlimited, we will get some aliasing effect:

• Furthermore, if 𝑥(𝑡) is not time limited, we need to truncate 𝑥(𝑡) with a

window function. This leads to leakage effect as discussed in previous

lecture (sampling).

Aliasing and leakage effects 



• If 𝑥(𝑛𝑇) and 𝑋 𝑟𝜔0 are the 𝑛th and 𝑟th samples of 𝑥 𝑡 and 𝑋(𝜔)
respectively, we define:

𝑥𝑛 = 𝑇𝑥 𝑛𝑇 =
𝑇0

𝑁0
𝑥(𝑛𝑇)

𝑋𝑟 = 𝑋(𝑟𝜔0), 𝜔0 = 2𝜋𝑓0 =
2𝜋

𝑇0

• It can be shown that 𝑥𝑛 and 𝑋𝑟 are related by the following equations:

𝑋𝑟 = σ𝑛=0
𝑁0−1 𝑥𝑛𝑒

−𝑗𝑛𝑟Ω0 (1)

𝑥𝑛 =
1

𝑁0
σ𝑟=0
𝑁0−1𝑋𝑟𝑒

𝑗𝑟𝑛Ω0 , Ω0 = 𝜔0𝑇 =
2𝜋

𝑁0
(2)

• The equations (1) and (2) above are the direct and inverse Discrete

Fourier Transforms respectively, known as DFT and IDFT.

• In the above equations, the summation is performed from 0 to 𝑁0 − 1. It

can be shown that the summation can be performed over any successive

𝑁0 values of 𝑛 or 𝑟.

Formal definition of DFT 



Proof of DFT relationships

• For the sampled signal we have:

𝑥(𝑡) = σ𝑛=0
𝑁0−1 𝑥(𝑛𝑇)𝛿(𝑡 − 𝑛𝑇).

• Since 𝛿(𝑡 − 𝑛𝑇) ⇔ 𝑒−𝑗𝑛𝜔𝑇

𝑋(𝜔) = ෍

𝑛=0

𝑁0−1

𝑥(𝑛𝑇)𝑒−𝑗𝑛𝜔𝑇

• For 𝜔 ≤
𝜔𝑠

2
, 𝑋(𝜔) the Fourier transform of 𝑥(𝑡) is

𝑋 𝜔

𝑇
, i.e.,

𝑋 𝜔 = 𝑇𝑋(𝜔) = 𝑇σ𝑛=0
𝑁0−1 𝑥(𝑛𝑇)𝑒−𝑗𝑛𝜔𝑇, 𝜔 ≤

𝜔𝑠

2

𝑋𝑟 = 𝑋 𝑟𝜔0 = 𝑇 ෍

𝑛=0

𝑁0−1

𝑥(𝑛𝑇)𝑒−𝑗𝑛𝑟𝜔0𝑇

• If we let 𝜔0𝑇 = Ω0 then Ω0 = 𝜔0𝑇 = 2𝜋𝑓0𝑇 =
2𝜋

𝑁0
and also 𝑇𝑥 𝑛𝑇 = 𝑥𝑛.

• Therefore, 𝑋𝑟 = σ𝑛=0
𝑁0−1 𝑥𝑛𝑒

−𝑗𝑛𝑟Ω0



Proof of DFT relationships cont.

• To prove the inverse relationship write:

σ𝑟=0
𝑁0−1𝑋𝑟𝑒

𝑗𝑟𝑚Ω0 = σ𝑟=0
𝑁0−1 σ𝑛=0

𝑁0−1 𝑥𝑛𝑒
−𝑗𝑛𝑟Ω0 𝑒𝑗𝑟𝑚Ω0 ⇒

σ𝑟=0
𝑁0−1𝑋𝑟𝑒

𝑗𝑟𝑚Ω0 = σ𝑛=0
𝑁0−1 𝑥𝑛 σ𝑟=0

𝑁0−1 𝑒−𝑗𝑟(𝑛−𝑚)Ω0

• σ𝑟=0
𝑁0−1 𝑒−𝑗𝑟(𝑛−𝑚)Ω0 = σ𝑟=0

𝑁0−1 𝑒
−𝑗𝑟(𝑛−𝑚)

2𝜋

𝑁0 = ቊ
𝑁0 𝑛 −𝑚 = 𝑘𝑁0, 𝑘 ∈ ℤ
0 otherwise

• Since 0 ≤ 𝑚, 𝑛 ≤ 𝑁0 − 1 the only multiple of 𝑁0 that the term (𝑛 − 𝑚) can

be is 0. Therefore:

෍

𝑟=0

𝑁0−1

𝑒
−𝑗𝑟(𝑛−𝑚)

2𝜋
𝑁0 = ቊ

𝑁0 𝑛 −𝑚 = 0 ⇒ 𝑛 = 𝑚
0 otherwise

• Therefore,

𝑥𝑚 =
1

𝑁0
σ𝑟=0
𝑁0−1𝑋𝑟𝑒

𝑗𝑟𝑚Ω0, Ω0 =
2𝜋

𝑁0



• Use DFT to compute the Fourier transform of 8rect 𝑡 (Lathi page 808.)

• The essential bandwidth 𝐵 (calculated by finding where the amplitude

response drops to 1% of its peak value) is well above 16𝐻𝑧. However, we

select 𝐵 = 4𝐻𝑧:

▪ To observe the effects of aliasing.

▪ In order not to end up with a huge number of samples in time.

Example



• 𝐵 = 4𝐻𝑧, 𝑓𝑠 = 2𝐵 = 8𝐻𝑧, 𝑇 =
1

𝑓𝑠
=

1

8
𝑠.

• For the frequency resolution we choose 𝑓0 =
1

4
𝐻𝑧. This choice gives us 4

samples in each lobe of 𝑋 𝜔 and 𝑇0 =
1

𝑓0
= 4𝑠.

• Recall that 𝑇0 is the period of the periodically extended original signal

𝑥(𝑡).

Example cont.



Example cont.

• 𝑁0 =
𝑇0

𝑇
=

4

1/8
= 32. Therefore, we must repeat 𝑥(𝑡) every 4𝑠 and take

samples every
1

8
𝑠. This yields 32 samples in a period.

• 𝑥𝑛 = 𝑇𝑥 𝑛𝑇 =
1

8
𝑥(

𝑛

8
) with 𝑥 𝑡 = 8rect 𝑡 .

• The DFT of the signal 𝑥𝑛 is obtained by taking any full period of 𝑥𝑛 (i.e.,

𝑁0 samples) and not necessarily 𝑁0 over the interval (0, 𝑇0) as we

assumed in the theoretical analysis of DFT.



Example cont.

• 𝑥𝑛 = ቐ
1 0 ≤ 𝑛 ≤ 3 and 29 ≤ 𝑛 ≤ 31
0 5 ≤ 𝑛 ≤ 27
0.5 𝑛 = 4,28

• Ω0 =
2𝜋

32
=

𝜋

16

• 𝑋𝑟 = σ𝑛=0
𝑁0−1 𝑥𝑛𝑒

−𝑗𝑟Ω0𝑛 = σ𝑛=0
31 𝑥𝑛𝑒

−𝑗𝑟(𝜋/16)𝑛. See figure below.



Example cont.

• Observe that 𝑋𝑟 is periodic.

• The dotted curve depicts the Fourier transform of 𝑥 𝑡 = 8rect 𝑡 .

• The aliasing error is quite visible when we use a single graph to compare

the superimposed plots. The error increases rapidly with 𝑟.


