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• We have seen previously that if 𝑥(𝑡) and 𝑦(𝑡) are input and output of a 

LTI system with impulse response ℎ(𝑡), then: 

𝑌(𝜔) = 𝐻 𝜔 𝑋(𝜔) 

• We can, therefore, perform LTI system analysis with Fourier transform 
in a way similar to that of Laplace transform. 

• However, FT is more restrictive than Laplace transform because the 
system must be stable and 𝑥(𝑡) must itself be Fourier transformable.  

• Laplace transform can be used to analyse stable and unstable systems, 
and applies to signals that grow exponentially.  

• As already mentioned, if a system is stable, it can be shown that the 
frequency response of the system 𝐻(𝑗𝜔) is just the Fourier transform of 
ℎ(𝑡) (i.e., 𝐻(𝜔)): 

𝐻 𝜔 = 𝐻(𝑠) 
𝑠=𝑗𝜔

 

 

 

Signal transmission through LTI systems 



• In certain types of systems we require the input to pass through the 
system without distortion. For example: 

 Signal transmission over a communication channel. 

 Amplifying systems. 
 

• Distortionless transmission implies that for a specific frequency band 
the output is the same as the input apart from: 

 A constant multiplicative factor. 

 A delay. 
 

• Therefore, if 𝑥(𝑡) is the input and 𝑦(𝑡) is the output, distortionless 

transmission implies that: 
𝑦 𝑡 = 𝐺0𝑥(𝑡 − 𝑡𝑑) 

 

 

Distortionless transmission 



• Distortionless transmission of an input 𝑥(𝑡) implies that: 
𝑦 𝑡 = 𝐺0𝑥(𝑡 − 𝑡𝑑) 

• Taking the Fourier transform of the above yields: 

𝑌 𝜔 = 𝐺0𝑋(𝜔)𝑒−𝑗𝜔𝑡𝑑 

• Knowing that: 

 𝑌 𝜔 = 𝐻(𝜔)𝑋(𝜔) 

we can write that the transfer function of a distortionless system is: 

𝐻 𝜔 = 𝐺0𝑒−𝑗𝜔𝑡𝑑 

 𝐻 𝜔 = 𝐺0 amplitude response must be a constant 

 ∠𝐻 𝜔 = −𝜔𝑡𝑑  phase response must be a linear function of 𝜔 with 

slope −𝑡𝑑 which passes through the origin 

Distortionless transmission cont. 



• In order to assess phase linearity we can find the slope of ∠𝐻 𝜔  as a 
function of frequency and see whether it is constant. We define: 

𝑡𝑔 𝜔 = −
𝑑

𝑑𝜔
 ∠𝐻 𝜔  

• 𝑡𝑔 𝜔  is called group delay or envelope delay. 

• Note that a phase response given by ∠𝐻 𝜔 = 𝜙0 − 𝜔𝑡𝑑 also has a 
constant group delay. From now on we can write 𝑡𝑑 = 𝑡𝑔. 

• Therefore, the condition for phase linearity by testing whether the 
group delay is constant is more relaxed. 

• Human ears are sensitive to amplitude distortion, but not phase 
distortion. 

• Human eyes are sensitive to phase distortion, but not so much to 
amplitude distortion (recall the experiment where we have combined 
the amplitude of one image and the phase of another). 

 

Group delay 



• For lowpass systems, the phase must be linear over the band of interest 
and also must pass through the origin. 
 Recall that phase is an odd function. Therefore, if it doesn’t pass 

through the origin, it will have a jump at the origin; this means that the 
group delay will be a Dirac function. 

 Infinite group delay means that the input takes infinite time to arrive at 
the output, i.e., it doesn’t practically get through. 

• For bandpass systems, the phase must be linear over the band of interest 
but does not have to pass through the origin. 

• Consider the following bandpass LTI system. 
 
 
 

 

 

• The pass band is of width 2𝑊 centred at 𝜔𝑐. 

 

Bandpass systems and group delay 



• Within the pass band and for 𝜔 ≥ 0 the phase can be described as 
∠𝐻 𝜔 = 𝜙0 − 𝜔𝑡𝑔 

• The phase is always an odd function, and therefore,  
∠𝐻 −𝜔 = −∠𝐻 𝜔 = −(𝜙0 −𝜔𝑡𝑔) = −𝜙0 + 𝜔𝑡𝑔 

• We can write: 

∠𝐻 𝜔 =  
𝜙0 − 𝜔𝑡𝑔 𝜔 ≥ 0

−𝜙0 − 𝜔𝑡𝑔 𝜔 < 0
 

• For a distortionless system we have 𝐻 𝜔 = 𝐺𝑜𝑒𝑗(𝜙0−𝜔𝑡𝑔), 𝜔 ≥ 0. 

 

 

 

 

 

 

 

 

Bandpass systems and group delay cont. 



• Consider the distortionless system 𝐻 𝜔 = 𝐺𝑜𝑒𝑗(𝜙0−𝜔𝑡𝑔), 𝜔 ≥ 0. 

• Consider the bandpass modulated signal 𝑧 𝑡 = 𝑥 𝑡 cos𝜔𝑐𝑡 centred at 𝜔𝑐   
where 𝑥(𝑡) is a lowpass signal with bandwidth 𝑊. 

 cos𝜔𝑐𝑡 is the carrier of 𝑧(𝑡) 

 𝑥(𝑡) is the envelope of 𝑧(𝑡) 

• Consider now the input 𝑧 𝑡 = 𝑥 𝑡 𝑒𝑗𝜔𝑐𝑡 with 𝑍 𝜔 = 𝑋(𝜔 − 𝜔𝑐). 

• The corresponding output is: 

𝑌 𝜔 = 𝐻(𝜔) 𝑍 𝜔 = 𝐻(𝜔)𝑋(𝜔 − 𝜔𝑐) 

𝑌 𝜔 = 𝐺0𝑋 𝜔 − 𝜔𝑐 𝑒𝑗(𝜙0−𝜔𝑡𝑔) = 𝐺0𝑒𝑗𝜙0𝑋(𝜔 − 𝜔𝑐)𝑒
−𝑗𝜔𝑡𝑔 

• We use the properties: 

 If 𝑥 𝑡 ⇔ 𝑋 𝜔  then: 

𝑥 𝑡 − 𝑡0 ⇔ 𝑋 𝜔 𝑒−𝑗𝜔𝑡0  and 𝑥 𝑡 𝑒𝑗𝜔0𝑡 ⇔ 𝑋 𝜔 − 𝜔0 . 

• We obtain: 𝑦 𝑡 = 𝐺0𝑒𝑗𝜙0𝑥 𝑡 − 𝑡𝑔 𝑒𝑗𝜔𝑐(𝑡−𝑡𝑔) = 𝐺0𝑥 𝑡 − 𝑡𝑔 𝑒𝑗[𝜔𝑐 𝑡−𝑡𝑔 +𝜙0] 

 

Bandpass systems and group delay cont. 



• Consider the distortionless system 𝐻 𝜔 = 𝐺𝑜𝑒𝑗(𝜙0−𝜔𝑡𝑔), 𝜔 ≥ 0. 
 

• We showed that for the input 𝑧 𝑡 = 𝑥 𝑡 𝑒𝑗𝜔𝑐𝑡 the output is: 

𝑦 𝑡 = 𝐺0𝑥 𝑡 − 𝑡𝑔 𝑒𝑗[𝜔𝑐 𝑡−𝑡𝑔 +𝜙0] 
 

• For the input 𝑧 𝑡 = 𝑥 𝑡 cos𝜔𝑐𝑡 = Re{𝑧 𝑡 } the output is 

𝑦 𝑡 = Re 𝑦 𝑡 = Re 𝐺0𝑥 𝑡 − 𝑡𝑔 𝑒𝑗[𝜔𝑐 𝑡−𝑡𝑔 +𝜙0]

= 𝐺0𝑥 𝑡 − 𝑡𝑔 cos[𝜔𝑐 𝑡 − 𝑡𝑔 + 𝜙0] 

 The output envelope 𝑥 𝑡 − 𝑡𝑔  remains undistorted. 

 The output carrier acquires an extra phase 𝜙0. 

 In a modulation system the transmission is considered distortionless if 
the envelope 𝑥(𝑡) remains undistorted. This is because the signal 
information is contained solely in the envelope. 

 Therefore, the above type of transmission is considered distortionless. 

 

Bandpass systems and group delay cont. 



• A signal 𝑧(𝑡) shown below is given by 𝑥 𝑡 cos𝜔𝑐𝑡 where 𝜔𝑐 = 2000𝜋. The 
pulse 𝑥(𝑡) is a lowpass pulse of duration 0.1sec and has a bandwidth of 
about 10𝐻𝑧 . This signal is passed through a filter whose frequency 
response is shown below.  Find and sketch the filter output 𝑦(𝑡). 

 

 

 

 

 

• 𝑧(𝑡) is a narrow band signal with bandwidth of 20𝐻𝑧 centred around 

𝑓𝑐 = 𝜔𝑐/2𝜋 = 1𝑘𝐻𝑧. 

• The gain at the centre frequency of 1𝑘𝐻𝑧 is 2.  

• The group delay is: 𝑡𝑔 =
2.4𝜋−0.4𝜋

2000𝜋
= 10−3. It can be found by drawing the 

tangent at 𝜔𝑐. 

• The intercept along the vertical axis by the tangent is 𝜙0 = −0.4𝜋. 

 

 

 

 

Example 



• Based on the above analysis the output of the system is: 

 
𝑦 𝑡 = 𝐺0𝑥 𝑡 − 𝑡𝑔 cos[𝜔𝑐 𝑡 − 𝑡𝑔 + 𝜙0]

= 2𝑥 𝑡 − 10−3 cos[2000𝜋 𝑡 − 10−3 − 0.4𝜋] 

 

 

 

 

 

 

Example cont. 



• The energy of a signal 𝑥(𝑡) can be derived either in time or in frequency 
domain: 

𝐸𝑥 =  𝑥(𝑡) 2𝑑𝑡 =
1

2𝜋

∞

𝑡=−∞

 𝑋(𝜔) 2𝑑𝜔
∞

𝜔=−∞

 

 

Proof 

𝐸𝑥 =  𝑥(𝑡)𝑥∗(𝑡)𝑑𝑡 =  𝑥(𝑡)
1

2𝜋
 𝑋∗ 𝜔 𝑒−𝑗𝜔𝑡𝑑𝜔

∞

𝜔=−∞

𝑑𝑡
∞

𝑡=−∞

∞

𝑡=−∞

 

= 
1

2𝜋
  𝑋∗ 𝜔  𝑥(𝑡)𝑒−𝑗𝜔𝑡𝑑𝑡

∞

𝑡=−∞
𝑑𝜔

∞

𝜔=−∞
 

= 
1

2𝜋
  𝑋∗ 𝜔 𝑋(𝜔)𝑑𝜔

∞

𝜔=−∞
= 

1

2𝜋
  𝑋(𝜔) 2𝑑𝜔

∞

𝜔=−∞
 

 

 

 

 

 

Signal energy: Parseval’s theorem 



• The total energy of a signal is the area under the curve 𝑋(𝜔) 2 divided by 
2𝜋.  

 

 

 

 

 

 

 

 

• The energy over a small frequency band Δ𝜔, where Δ𝜔 → 0 is: 

Δ𝐸𝑥 = 
1

2𝜋
 𝑋(𝜔) 2 Δ𝜔 = 𝑋(𝜔) 2 Δ𝑓, Δ𝑓 = 

Δ𝜔

2𝜋
𝐻𝑧 

• The function 𝑋(𝜔) 2 is the energy spectral density (per unit bandwidth in 
𝐻𝑧). 

 

 

 

 

Signal energy: Parseval’s theorem cont. 



• If 𝑥(𝑡) is a real signal, then 𝑋(𝜔) and 𝑋(−𝜔) are conjugate. 
 
 

• In that case 𝑋(𝜔) 2 is even, since 𝑋(𝜔) 2 = 𝑋 𝜔 𝑋∗ 𝜔 = 𝑋 𝜔 𝑋 −𝜔 . 
 

 

• Therefore,  

𝐸𝑥 =
1

2𝜋
 𝑋(𝜔) 2𝑑𝜔

∞

𝜔=−∞
 = 2

1

2𝜋
 𝑋(𝜔) 2𝑑𝜔

∞

𝜔=0
 

=
1

𝜋
 𝑋(𝜔) 2𝑑𝜔

∞

𝜔=0

 

 
 

• Consequently, in a real signal the energy contributed by all spectral 
components between 𝜔1 and 𝜔2 is: 

Δ𝐸𝑥 = 
1

𝜋
  𝑋(𝜔) 2𝑑𝜔

𝜔2

𝜔1
 

 

 

 

Energy spectral density of a real signal 



• Extracting a segment of a signal in time is the same as multiplying the 
signal with a rectangular window: 
 

 

 

 

 

Windowing and its effect 

X * 

Spectral spreading 

Energy spread out 

from 𝜔0 to width of 

≈ 2𝜋/𝑇. 

Leakage 

Energy leaks out 

from the mainlobe to 

the sidelobes. 



• Using the previous example as a basis to understand windowing effects 
observe that: 

 If 𝑥(𝑡) has two spectral components of frequencies which differ by less 

than 
4𝜋

𝑇
𝑟𝑎𝑑/𝑠𝑒𝑐 (

2

𝑇
𝐻𝑧) they will be indistinguishable in the truncated 

signal. 

 The result is loss of spectral resolution. 
 

 

 

 

 

Windowing and its effect cont. 



• Amplitude spectrum of a rectangular window in 𝑑𝐵. 

 

 

 

Mainlobe and sidelobes of a rectangular window in dB 



1. Make mainlobe width as narrow as possible; this implies as wide a 
window as possible. 

2. Avoid big discontinuity in the windowing function to reduce leakage 
(i.e., high frequency sidelobes). 

 1. and 2. above are incompatible – therefore a compromise is required. 

Commonly used windows apart from the rectangular window are: 

• Hamming windows 

• Hanning windows 

• Barlett windows 

• Blackman windows 

• Kaiser windows 

 More on this topic in subsequent 

Digital Signal Processing and  

Filter Design courses. 

 

 

 

 

Remedies for side effects of truncation 



Comparison of different windowing functions 



System’s response to Dirac 
function (impulse response) 

𝒙(𝒕) as a sum of shifted impulse 
components 

𝒚(𝒕) as a sum of responses to 
impulse components 

System’s response to 𝒆𝒋𝝎𝒕 is 
𝑯(𝝎)𝒆𝒋𝝎𝒕 

𝒙(𝒕) as a sum of everlasting 
exponential components 

𝒚(𝒕) as a sum of responses to 
exponential components 

Time domain vs frequency domain. Summary. 


