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• Continuous time systems.

▪ Good for analogue signals and general understanding of signals and systems.

▪ Appropriate mostly to analogue electronic systems.

𝑥(𝑡) 𝑦(𝑡)

• Electronic devices are increasingly digital.

▪ E.g. mobile phones are all digital, TV broadcast will be 100% digital in UK.

▪ We use digital ASIC chips, FPGAs and microprocessors to implement systems

and to process signals.

▪ Continuous signals are converted to numbers (discrete signals), they are

processed and then converted back to continuous signals.

𝑥 𝑡 𝑥[𝑛] 𝑦 𝑛 𝑦(𝑡)

Continuous time versus discrete time

Electronic devices

Digital

Signal Processing
D-to-AA-to-D



Sampling

• The sampling process converts a continuous signal 𝑥(𝑡) into a sequence

of numbers 𝑥[𝑛].

• A sample is kept every 𝑇𝑠 units of time. This process is called uniform

sampling and 𝑥 𝑛 = 𝑥(𝑛𝑇𝑠).

𝑥(𝑡) 𝑇𝑠 = 1/𝑓𝑠 𝑥[𝑛]



• Sampling theorem is the bridge between continuous-time and discrete-

time signals.

• It states how often we must sample in order not to loose any information.

𝑥(𝑡) 𝑇𝑠 = 1/𝑓𝑠 𝑥[𝑛]

Sampling theorem

A continuous-time lowpass signal 𝑥(𝑡) with frequencies no higher than

𝑓𝑚𝑎𝑥𝐻𝑧 can be perfectly reconstructed from samples taken every 𝑇𝑠 units

of time, 𝑥 𝑛 = 𝑥(𝑛𝑇𝑠), if the samples are taken at a rate 𝑓𝑠 = 1/𝑇𝑠 that is

greater than 2𝑓𝑚𝑎𝑥𝐻𝑧.

Sampling theorem



• If a lowpass signal has a spectrum bandlimited to 𝐵𝐻𝑧, i.e., 𝑋 𝜔 = 0 for

𝜔 > 2𝜋𝐵, it can be reconstructed from its samples without error if these

samples are taken uniformly at a rate 𝑓𝑠 > 2𝐵 samples per second.

• The minimum sampling rate 𝑓𝑠 = 2𝐵 required to reconstruct 𝑥(𝑡) from its

samples is called the Nyquist rate for 𝑥(𝑡) and the corresponding

sampling interval 𝑇𝑠 =
1

2𝐵
is called the Nyquist interval. Samples of a

continuous signal taken at its Nyquist rate are the Nyquist samples of that

signal.

• In other words the minimum sampling frequency is 𝑓𝑠 = 2𝐵𝐻𝑧.

• A bandpass signal whose spectrum exists over a frequency band

𝑓𝑐 −
𝐵

2
< 𝑓 < 𝑓𝑐 +

𝐵

2
also has a bandwidth of 𝐵𝐻𝑧. Such a signal is still

uniquely determined by 2𝐵 samples per second but the sampling scheme

is a bit more complex compared to the case of a lowpass signal.

Sampling theorem cont.



• Consider a signal bandlimited to 𝐵𝐻𝑧 with Fourier transform 𝑋(𝜔).

• The sampled version of the signal 𝑥(𝑡) at a rate 𝑓𝑠𝐻𝑧 can be expressed as

the multiplication of the original signal with an impulse train as follows:

ҧ𝑥 𝑡 = 𝑥 𝑡 𝛿𝑇𝑠 𝑡 = σ𝑛 𝑥(𝑛𝑇𝑠)𝛿(𝑡 − 𝑛𝑇𝑠), 𝑇𝑠 = 1/𝑓𝑠

• We can express the impulse train using Fourier series as follows:

𝛿𝑇𝑠 𝑡 =
1

𝑇𝑠
[1 + 2cos𝜔𝑠𝑡 + 2cos2𝜔𝑠𝑡 + 2cos3𝜔𝑠𝑡 + ⋯ ], 𝜔𝑠 =

2𝜋

𝑇𝑠
= 2𝜋𝑓𝑠

• Therefore,

ҧ𝑥 𝑡 = 𝑥(𝑡)𝛿𝑇𝑠 𝑡 =
1

𝑇𝑠
[𝑥(𝑡) + 2𝑥(𝑡)cos𝝎𝒔𝑡 + 2𝑥(𝑡)cos𝟐𝝎𝒔𝑡 + 2cos𝟑𝝎𝒔𝑡 + ⋯ ]

• Since the following holds: 𝑥 𝑡 cos𝜔𝑠𝑡 ⇔
1

2
[𝑋 𝜔 + 𝜔𝑠 + 𝑋 𝜔 − 𝜔𝑠 ]

we have

ത𝑋 𝜔 =
1

𝑇𝑠
σ𝑛=−∞
∞ 𝑋 𝜔 − 𝑛𝜔𝑠

Sampling theorem: mathematical proof



• The previous analysis is depicted below. Consider a signal, bandlimited

to 𝐵𝐻𝑧, with Fourier transform 𝑋(𝜔) (depicted real for convenience).

• The sampled signal has the following spectrum.

Depiction of previous analysis



• We graphically illustrate below the collection of the above mentioned

processes .

▪ The signal is multiplied by a train of impulses (in reality these are

very narrow pulses).

▪ The sampled signal is generated.

▪ A lowpass filter is required in order to isolate the main period of the

Fourier spectrum.

𝑥(𝑡) 𝑇𝑠 = 1/𝑓𝑠 𝑥[𝑛]

Depiction of previous analysis



• A continuous signal with its Fourier transform is depicted on the left.

• The sampled signal and its Fourier transform is depicted on the right

▪ Note that, for simplicity, the Fourier transform is considered to 

be real in this case.

Depiction of previous analysis cont.



• The gap between two adjacent spectral repetitions is (𝑓𝑠−2𝐵)𝐻𝑧.

• In order to reconstruct the original signal 𝑥(𝑡) we can use an ideal

lowpass filter on the sampled spectrum which has a bandwidth of any

value between 𝐵 and (𝑓𝑠 − 𝐵𝐻𝑧).

• Reconstruction process is possible only if the shaded parts do not

overlap. This means that 𝑓𝑠 must be greater that twice 𝐵.

• We can also visually verify the sampling theorem in the above figure.

Reconstruction of the original signal



• The signal 𝑥 𝑛𝑇𝑠 has a spectrum 𝑋𝑠(𝜔) which is multiplied with a

rectangular pulse in frequency domain in order to isolate the main

period which is the spectrum of the original continuous time signal.

▪ Note that, for simplicity, the Fourier transform is considered to

be real in this case.

𝑋𝑠(𝜔)

Reconstruction in frequency domain



• The signal 𝑥 𝑛𝑇𝑠 is convolved with a sinc function, which is the time

domain version of a rectangular pulse in frequency domain centred at

the origin.

𝑥 𝑛𝑇𝑠 ∗ sinc 𝑎𝑡 = σ𝑛 𝑥[𝑛] sinc[𝑎(𝑡 − 𝑛𝑇𝑠)]

𝑥 𝑛𝑇𝑠 sinc 𝑎𝑡

Reconstruction in time domain



• Consider the signal 𝑥 𝑡 = sinc2 5𝜋𝑡 .

• The property (
𝑊

2𝜋
)sinc2 𝑊𝑡/2 ⇔ Δ(𝜔/2𝑊) holds with:

Δ 𝑥 =
0 𝑥 ≥

1

2

1 − 2 𝑥 𝑥 <
1

2

• Using the above property with

𝑊 = 10𝜋 we obtain

𝑋 𝜔 = 0.2Δ
𝜔

20𝜋

• The bandwidth is 𝐵 = 5𝐻𝑧 (10𝜋𝑟𝑎𝑑/𝑠).
• Consequently, the Nyquist sampling rate is 𝑓𝑠 = 10𝐻𝑧; we require at least

10 samples per second.

• The Nyquist interval is 𝑇𝑠 =
1

10
= 0.1𝑠.

Example

0.2

−10𝜋 10𝜋



• In that case we use the Nyquist sampling rate of 10𝐻𝑧.

• The spectrum ത𝑋 𝜔 consists of back-to-back, non-overlapping

repetitions of
1

𝑇𝑠
𝑋 𝜔 repeating every 2𝐵 = 10𝐻𝑧.

• In order to recover 𝑋(𝜔) from ത𝑋 𝜔 we must use an ideal lowpass filter

of bandwidth 5𝐻𝑧. This is shown in the right figure below with the dotted

line.

• Obviously, it is not possible to design and implement such a filter.

Example cont.

Nyquist sampling: Just about the correct sampling rate



• Sampling at higher than the Nyquist rate (in this case 20𝐻𝑧 ) makes

reconstruction easier.

• The spectrum ത𝑋 𝜔 consists of non-overlapping repetitions of
1

𝑇𝑠
𝑋 𝜔 ,

repeating every 20𝐻𝑧 with empty bands between successive cycles.

• In order to recover 𝑋(𝜔) from ത𝑋 𝜔 we can use a practical lowpass filter

and not necessarily an ideal one. This is shown in the right figure below

with the dotted line.

• The filter we use for reconstruction must have gain 𝑇𝑠 and bandwidth of

any value between 𝐵 and (𝑓𝑠 − 𝐵)𝐻𝑧.

Example cont.

Oversampling: What happens if we sample too quickly?



• Sampling at lower than the Nyquist rate (in this case 5𝐻𝑧) makes

reconstruction impossible.

• The spectrum ത𝑋 𝜔 consists of overlapping repetitions of
1

𝑇𝑠
𝑋 𝜔

repeating every 5𝐻𝑧.

• 𝑋(𝜔) is not recoverable from ത𝑋 𝜔 .

• Sampling below the Nyquist rate corrupts the signal. This type of

distortion is called aliasing.

Example cont.

Undersampling: What happens if we sample too slowly?



• Consider what happens when a 1𝐻𝑧 and a 6𝐻𝑧 sinewaves are sampled 

at a rate of 5Hz.

• The 1𝐻𝑧 and 6𝐻𝑧 sinewaves are indistinguishable after sampling. The 

two discrete signals produced are identical. 

Aliasing



• The two original signals are shown together with the sampled values. As

verified, the sampled values are not efficient to recover the original

shape of the high frequency signal (shown in blue).

Aliasing cont.



• Consider making a video of a clock face.

• The second hand makes one revolution per minute (𝑓𝑚𝑎𝑥 =
1

60
𝐻𝑧).

• Critical Sampling: 𝑓𝑠 >
1

30
𝐻𝑧 (𝑇𝑠 < 30sec), anything below that sampling

frequency will create problems.

For example:

▪ When 𝑇𝑠 = 60sec (𝑓𝑠~0.167𝐻𝑧), the second hand will not move.

▪ When 𝑇𝑠 = 59sec ( 𝑓𝑠~0.169𝐻𝑧 ), the second hand will move

backwards.

• Watch the videos (optional)

https://www.youtube.com/watch?v=VNftf5qLpiA

https://www.youtube.com/watch?v=QOwzkND_ooU

Aliasing and the wagon wheel effect

https://www.youtube.com/watch?v=VNftf5qLpiA
https://www.youtube.com/watch?v=QOwzkND_ooU


Anti-aliasing filter

• To avoid distortion of a signal after sampling, one must ensure that the

signal being sampled at 𝑓𝑠 is bandlimited to a frequency 𝐵, where 𝐵 <
𝑓𝑠

2
.

• If the signal does not obey the above restriction, we may apply a lowpass

filter with cut-off frequency
𝑓𝑠

2
before sampling.

Sampling Reconstruction

• If the original signal 𝑥(𝑡) is not bandlimited to
𝑓𝑠

2
, perfect reconstruction is

not possible when sampling at 𝑓𝑠. However, the reconstructed signal ො𝑥(𝑡) is

the best bandlimited approximation to 𝑥(𝑡) in the least-square sense.



• The impulse train is not a very practical sampling signal

• In practice we may use a train of pulses 𝑝𝑇(𝑡) as the one shown below.

▪ The pulse height is 𝐴 = 1, its width is 𝜏 = 0.025sec and its period is 𝑇 =
0.1sec.

• We use the same signal as previously, i.e.,

𝑥 𝑡 = sinc2(5𝜋𝑡) with 𝑋 𝜔 = 0.2Δ(𝜔/20𝜋)
▪ The maximum frequency of the signal is 𝑓max = 5𝐻𝑧.
▪ Therefore, the minimum sampling rate is 𝑓𝑠 = 10𝐻𝑧.

• For the train of pulses we use Fourier Series (Lathi, Chapter 6):

𝑝𝑇𝑠 𝑡 = 𝐶0 +෍

𝑛=1

∞

𝐶𝑛cos𝑛𝜔𝑠𝑡

𝐶0 = 𝐴
𝜏

𝑇
= 1 ∙

0.025

0.1
=
1

4

𝐶𝑛 =
2∙𝐴

𝑛𝜋
sin(𝑛𝜋

𝜏

𝑇
) =

2

𝑛𝜋
sin(

𝑛𝜋

4
)

𝜔𝑠 = 20𝜋rads/sec.

Practical sampling



• 𝑝𝑇𝑠 𝑡 =
1

4
+ σ𝑛=1

∞ 𝐶𝑛cos𝑛𝜔𝑠𝑡 , 𝐶𝑛 =
2∙𝐴

𝑛𝜋
sin(𝑛𝜋

𝜏

𝑇
) =

2

𝑛𝜋
sin(

𝑛𝜋

4
)

• ҧ𝑥 𝑡 = 𝑥 𝑡 𝑝𝑇𝑠 𝑡 =
1

4
𝑥 𝑡 + 𝐶1𝑥 𝑡 cos1 ∙ 20𝜋𝑡 + 𝐶2𝑥 𝑡 cos2 ∙ 20𝜋𝑡 +

𝐶3𝑥 𝑡 cos3 ∙ 20𝜋𝑡 + ⋯

=
1

4
𝑥 𝑡 + 𝐶1𝑥 𝑡 cos20𝜋𝑡 + 𝐶2𝑥 𝑡 cos40𝜋𝑡 + 𝐶3𝑥 𝑡 cos60𝜋𝑡 + ⋯

• ത𝑋 𝜔 =
1

4
𝑋 𝜔 +

𝐶1

2
𝑋 𝜔 − 20𝜋 + 𝑋 𝜔 + 20𝜋 +

𝐶2

2
[

]

𝑋 𝜔 − 40𝜋 +

𝑋 𝜔 + 40𝜋 +
𝐶3

2
𝑋 𝜔 − 60𝜋 + 𝑋 𝜔 + 60𝜋 +⋯

• A lowpass filter can be used to recover 𝑋 𝜔 .

• The entire process described above is shown schematically in the

following slide.

Practical sampling



𝑥 𝑡 = sinc2(5𝜋𝑡) 𝑋 𝜔 = 0.2Δ(𝜔/20𝜋)

⇔

⇔

×

Practical sampling cont.



• The process of reconstructing a continuous-time signal 𝑥(𝑡) from its

samples is also known as interpolation.

• As already mentioned, the filter we use for reconstruction must have gain

𝑇𝑠 and bandwidth of any value between 𝐵 and (𝑓𝑠−𝐵)𝐻𝑧.

• A good choice is the middle value
𝑓𝑠

2
=

1

2𝑇𝑠
𝐻𝑧 or

𝜋

𝑇𝑠
𝑟𝑎𝑑/𝑠. This gives a filter

with frequency response:

𝐻 𝜔 = 𝑇𝑠rect
𝜔

2𝜋𝑓𝑠
= 𝑇𝑠rect(

𝜔𝑇𝑠
2𝜋

)

• In time domain, the impulse response of the above filter is given by:

ℎ 𝑡 = sinc
𝜋𝑡

𝑇𝑠

• For the Nyquist sampling rate, 𝑇𝑠 =
1

2𝐵
,

ℎ 𝑡 = sinc 2𝜋𝐵𝑡

Ideal signal reconstruction



• Observe the interesting fact that ℎ 𝑡 = 0

for all Nyquist sampling instants 𝑡 = ±
𝑛

2𝐵
,

except at 𝑡 = 0.

• Each sample in ҧ𝑥 𝑡 , being an impulse, generates a sinc pulse of height

equal to the strength of the sample when is applied at the input of this filter

(recall convolution with an impulse). Addition of all sinc impulses results in

𝑥(𝑡) (look at next slide).

• The filter output is:

𝑥 𝑡 = σ𝑛 𝑥 𝑛𝑇𝑠 ℎ 𝑡 − 𝑛𝑇𝑠 = σ𝑛 𝑥 𝑛𝑇𝑠 sinc
𝜋

𝑇𝑠
(𝑡 − 𝑛𝑇𝑠)

• In the case of Nyquist sampling rate 𝑇𝑠 =
1

2𝐵
. The above equation becomes:

𝑥 𝑡 = σ𝑛 𝑥 𝑛𝑇𝑠 ℎ 𝑡 − 𝑛𝑇𝑠 = σ𝑛 𝑥 𝑛𝑇𝑠 sinc 2𝜋𝐵𝑡 − 𝑛𝜋

This is called the interpolation formula.

Ideal signal reconstruction cont.



• The above analysis is depicted below.

Ideal signal reconstruction cont.



• Ideal reconstruction system is therefore:

• In practise, we normally sample at higher frequency than Nyquist rate, so 
that we don’t have to use an ideal lowpass filter (there isn’t one anyway!).

Practical signal reconstruction



Practical signal reconstruction cont.

• The disappointing truth is that any filter that has a frequency response

which is zero above a certain frequency is not realizable (Paley-Wiener

criterion; for more information look at Lathi, Chapter 7, equation 7.61).

• The above implies that in practice it is impossible to perfectly reconstruct

a bandlimited signal from its samples!

• However, a filter with gradual cutoff characteristics is easier to realize

compared to an ideal filter.

• Furthermore, as the sampling rate increases, the recovered signal

approaches the desired signal more closely.



Scalar quantisation

• The sampling theorem allows us to represent signals by means of

samples.

• In order to store these samples we need to convert the real values 𝑥[𝑛]
into a format which fits the memory model of a computer.

• The process that maps the real line to a countable set is called

quantisation.

• Quantisation is irreversible. This means that quantisation introduces

approximation errors.

• Usually the number of quantisation levels 𝑁 is a power of 2, i.e., 𝑁 = 2𝑅

so that each symbol can be expressed using a stream of binary bits.



Scalar quantisation cont.

• Typically each sample is quantized independently (scalar quantisation).

• When the quantisation intervals have equal width we say that

quantisation is uniform.



Scalar quantisation cont.

• In a digital environment signals are both sampled and quantized.

• In the following figures a continuous signal (blue solid line) that has been

sampled and then quantized is depicted.



Quantisation examples

• A few numbers (in absence of compression)

Low-quality audio signal (e.g., voice) 

• Frequency from 300𝐻𝑧 to 3400𝐻𝑧, we assume 𝐵 = 4𝑘𝐻𝑧.

• Sampling Frequency 𝑓𝑠 = 2𝐵 = 8𝑘𝐻𝑧.

• Each sample is quantized with a 8-bit quantiser. The signal-to-noise-
ratio due to quantisation error is 𝑆𝑁𝑅 ≈ 48𝑑𝐵.

• This produces 
64𝑘𝑏𝑖𝑡𝑠

𝑠
.

High Fidelity Audio Signals (e.g., CD) 

• Bandwidth 15𝐻𝑧, we assume 𝐵 = 22.5𝑘𝐻𝑧.

• Sampling frequency 𝑓𝑠 = 2𝐵 = 44.1𝑘𝐻𝑧.

• 16-bit quantiser (𝑆𝑁𝑅 ≈ 96𝑑𝐵).

• This produces ≈
706𝑘𝑏𝑖𝑡𝑠

𝑠
.



• The figure depicts a 2-bit quantiser.

• Low-rate quantization introduces correlation between the quantisation
error and the original signal.

• This correlation leads to audible artifacts in audio signals or artificial
edges in images.

Quantisation error



Quantisation error cont.

• In the example below the quantized image has been allocated a number

of intensity levels which is not large enough. Therefore, the quantized

image does not look “real” to the human eye; instead it looks like a

segmented image.

Original                                    Quantized

• Images have been taken from http://en.wikipedia.org/wiki/Dither.



• The sampling theorem is usually known as the Shannon Sampling

Theorem due to Claude E. Shannon’s paper “A mathematical theory of

communication” in 1948.

• The minimum required sampling rate 𝑓𝑠 (i.e. 2𝐵) is known as the Nyquist

sampling rate or Nyquist frequency because of Harry Nyquist’s work on

telegraph transmission in 1924 with Karl Küpfmüller.

• The first formulation of the sampling theorem which was applied to

communication is probably due to a Russian scientist by the name of

Vladimir A. Kotelnikov in 1933.

• However, mathematicians already knew about this in a different form

and called this the interpolation formula. E. T. Whittaker published the

paper “On the functions which are represented by the expansions of the

interpolation theory” back in 1915.

For your own interest: Who discovered the sampling theorem?



Appendix: Fourier Series of selected periodic signals


