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In this revision lecture we will focus on:

« Sampling.
e The z — transform.
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The sampling process converts continuous signals x(t) into numbers x[n].
A sample is kept every T, units of time. This process is called uniform

sampling and x[n] = x(nTy).

x(t) Ts = 1/f; x[n]

- X

Continuous Waveform: x(7) = cos(2x1001)
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Sar np] ed Signal: x[n] = x(nT;) = cos(2m100nT}), with T; = 0.0005
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Sampled Signal: x[n] = x(nT) = cos(2m 100nTy), with T, = 0.002
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sSampling theorem

« Sampling theorem is the bridge between continuous-time and discrete-
time signals.

« |t states how often we must sample in order not to loose any information.

x(t) Ts =1/fs x[n]

/\- >__ 1y, .

Sampling theorem

A continuous-time lowpass signal x(t) with frequencies no higher than
fmax Hz can be perfectly reconstructed from samples taken every T units

of time, x[n] = x(nTy), if the samples are taken at a rate f, = 1/T, that is
greater than 2f,,,4-
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« Consider a signal, bandlimited to BHz, with Fourier transform X(w)
(depicted real for convenience).

x(1)

—2wB| 27B w ——
of ; f (Hz) —

« The sampled signal has the following spectrum.

; - X(n) pes
- Lowpass X(w)
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« The gap between two adjacent spectral repetitions is (f;—2B)Hz.

* In theory, in order to reconstruct the original signal x(t), we can use an

iIdeal lowpass filter on the sampled spectrum which has a bandwidth of
any value between B and (f; — BHz).

Lowpass
filter

« Reconstruction process is possible only if the shaded parts do not
overlap. This means that f;, must be greater that twice B.

« We can also visually verify the sampling theorem in the above figure.
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 Frequency domain

The signal x(nTy) =< x(t), 5(t — nT,) > has a spectrum X;(w) which is
multiplied with a rectangular pulse in frequency domain.
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Reconstruction generic example cont.

 Time domain

The signal x(nT;) =< x(t),6(t —nT;) > is convolved with a sinc
function, which is the time domain version of a rectangular pulse in
frequency domain centred at the origin.

< x(t),6(t — nTy) >= sinc(at) = ), x[n] sinc[a(t — nTy)]
[Recall that convolution with a shifted Delta function, shifts the original
function at the location of the Delta function].
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Recall Nyquist sampling: Just ahout the correct sampling rate

In that case we use the Nyquist sampling rate of 10Hz = 2BHz.

The spectrum X(w) consists of back-to-back, non-overlapping
repetitions of TiX (w) repeating every 10Hz.

In order to recover X(w) from X(w) we must use an ideal lowpass filter

of bandwidth 5Hz. This is shown in the right figure below with the dotted
line.
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Recall oversampling: What happens if we sample too quickly?

« Sampling at higher than the Nyquist rate (in this case 20Hz) makes
reconstruction easier.

« The spectrum X(w) consists of non-overlapping repetitions of TiX(a)),

repeating every 20Hz with empty bands between successive cycles.

 In order to recover X(w) from X(w) we can use a practical lowpass filter
and not necessarily an ideal one. This is shown in the right figure below
with the dotted line.
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 The filter we use for reconstruction must have gain T; and bandwidth of
any value between B and (f; — B)Hz.
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Recall undersampling: What happens if we sample too slowly?

« Sampling at lower than the Nyquist rate (in this case 5Hz) makes
reconstruction impossible.

« The spectrum X(w) consists of overlapping repetitions of TiX(a))

repeating every 5Hz.
e X (w) is not recoverable from X(w).

« Sampling below the Nyquist rate corrupts the signal. This type of
distortion is called aliasing.

1 X(w)
x(1) |
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Problem: Reconstruction of the continuous time using the
sample and hold operation

« As already mentioned, in order to reconstruct the original signal x(t) in
theory, we can use an ideal lowpass filter on the sampled spectrum.

* |n practice, there are various circuits/devices which facilitate
reconstruction of the original signal from its sampled version.

« Consider a continuous-time, band-limited signal x(t), limited to
bandwidth |w| < 2m X B rad/sec. We sample x(t) uniformly with
sampling frequency f; to obtain the discrete-time signal x[n].

« A possible technique to reconstruct the continuous-time signal from its
samples is the so called sample and hold circuit. This is an analogue
device which samples the value of a continuously varying analogue
sighal and outputs the following signal xp 4 (t).

n T. n T. T. T.
(x[n] —-5<t<—+7 (xn] nl-Z<t<nl+2
a®=\xlnlz e=7x% T)allz c=ald

. 0 otherwise . 0 otherwise
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The figure below facilitates the understanding of sample and hold
operation.

The grey continuous curve depicts the continuous signal x(t).
The red arrows depict the locations of the discrete (sampled) signal x|[n].
The green continuous curve depicts the signal xp4(t).

A
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In the sample and hold operation the signal is written as:

o ,_n
xpa(t) = z x(nTs)H< Tfs>

n=-—oo
with T1(t) the very well known unit gate or rectangle function:
1 |t] < 0.5
[1(¢t) = rect(t) = {0.5 It] = 0.5
0 otherwise
Note that the values at t = +0.5 do not have any impact in the Fourier
Transform of I1(t) and alternative definitions of I1(t) have rect(+0.5) to be
0, 1 or undefined.

11(x) I1(x)
ot o Y

0.8

0.6

0.4 0.

0.

!
2




Imperial College

Taking into consideration that:

(0]

g
xpa(t) = z x(nTs)H< Tfs>

n=-—oo

It is straightforward to show that:

(0]

xpa(t) = z x(nTs) [5(t —nTs) * 11 <T£>]

n=-—oo

xDA(t) = ( z [x(nTs)5(t - nTs)]) * 11 (T£>

n=-—co
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toa(t) = (B alx(nTS(E — nT)]) # 11 (£)

The Fourier transform of the function }.;-_ . x(nT,)5(t — nTy) is

The Fourier transform of the function I1 (Ti) can be easily found using

S

the definition of the Fourier transform.

The Fourier transform of xp4(t) is the product of the two Fourier
transforms described above (remember that convolution in time
becomes multiplication in frequency).
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toa(t) = (B alx(nTS(E — nT)]) # 11 (£)

We see that

toor= (2 5, k%5 ) (o)

k_—oo

= (Z,?:_OOX(a) + k?s)) - sinc (wTTS)

In order to recover the original spectrum X(w) we can remove the
replications X(w + kZT—”) by passing Xp4(w) through a lowpass filter.

Note that the term smc( » ) must be removed from Xp4(w).
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Example on a discrete system’s transfier function

« Consider a LTI system with input x[n] and output y[n] related with the
difference equation:

5
y[n —2] - Ey[n — 1] + y[n] = x[n]

Determine the impulse response and its z —transform in the following
three cases:

= The system is causal.
= The system is stable.
= The system is neither stable nor causal.
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Recall: Find the z —transformof x|n] = y"u[n]

Find the z —transform of the causal signal y™u[n], where y is a constant.
By definition:

We apply the geometric progression formula:

1+x+x?+x3+-= x| <1
1—x
Therefore,
I 4
X[Z]_l—g’ . <1
Z
i~ |z| > |yl

We notice that the z —transform exists for certain values of z. These values
form the so called Region-Of-Convergence (ROC) of the transform.
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Recall: Find the z —transformof x|n] = —y"u[—n — 1]

Find the z —transform of the anticausal signal —y™u[—n — 1], where y is a
constant.

By definition:
(0'e] -1 o 00
X[z] = z —yMu[-n—-1]z7" = z —y"z~ z A z <E>
n=—oo n=-—oo n=1 n=1 14

) (-> )

Z

<1
Y

)

Xzl == (7)==

14

- 25:(2)
yn:O y
Therefore,

VA
=7 |z| < |yl

We notice that the z —transform exists for certain values of z, which consist
the complement of the ROC of the function y™u[n] with respect to the
z —plane.
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Example cont.

« Consider a LTI system with input x[n] and output y[n] related with the
difference equation:
5
yln—2] =Zyln =1l + y[n] = x[n]
By taking the z —transform in both sides of the above equation, we

obtain:
(Z—Z — ;Z_l + 1) Y(Z) — X(Z) =

Y(z) _ 1 _ 1 . % B %
X(z) (Z_Z—gz—1+1) B (2‘1—2)(2—1—%)  (z71-2) (z‘l—%)
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Example cont.

2
3

The impulse response that corresponds to the term =t = (— —)t

can be:

+ hylnl = (=2) (2) ulnl. 12l > [1/2)

3 2

+ halnl =2(2) ul-n - 1], Izl < |1/2]

The impulse response that corresponds to the term

be:
+ hs[n] =3 2"uln], I2] > 12|

—-—— Can

¢ hyln] = (=D2"u[-n - 1], |z| < |2|
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In order for the system to be stable:

aln) = (=2) (3)" uln] — 22mu[-n — 1], |2l > [1/2IN]z] < |2]

3 2

In order for the system to be causal:

aln) = (=2) (2)" ulnl + 22muln], |2| > 11/2I0[z]> 12| =[z|> |2

The ROC doesn’t include the unit circle.

In order for the system to be neither stable nor causal the remaining

2

two combinations should be considered.

Al =2 (2) ul-n— 1] + £2muln], 2l < (1721012l > 12 =@ s

Aln) = 2(2)" ul-n — 1] - £2mu[-n — 1], |zl < |1/2INlz| < |2

The ROC doesn’t include the unit circle.



