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• We have seen previously that if 𝑥(𝑡) and 𝑦(𝑡) are input and output of a

LTI system with impulse response ℎ(𝑡), then:

𝑌(𝜔) = 𝐻 𝜔 𝑋(𝜔)

• We can, therefore, perform LTI system analysis with Fourier transform
in a way similar to that of Laplace transform.

• However, FT is more restrictive than Laplace transform because the
system must be stable and 𝑥(𝑡) must itself be Fourier transformable.

• Laplace transform can be used to analyse stable and unstable systems,
and applies to signals that grow exponentially.

• As already mentioned, if a system is stable, it can be shown that the
frequency response of the system 𝐻(𝑗𝜔) is just the Fourier transform of
ℎ(𝑡) (i.e., 𝐻(𝜔)):

ቚ𝐻 𝜔 = 𝐻(𝑠)
𝑠=𝑗𝜔

Signal transmission through LTI systems



System’s response to Dirac 
function (impulse response)

𝒙(𝒕) as a sum of shifted impulse 
components

𝒚(𝒕) as a sum of responses to 
impulse components

System’s response to 𝒆𝒋𝝎𝒕 is

𝑯(𝝎)𝒆𝒋𝝎𝒕

𝒙(𝒕) as a sum of everlasting 
exponential components

𝒚(𝒕) as a sum of responses to 
exponential components

Time domain vs frequency domain



• In certain types of systems we require the input to pass through the
system without distortion. For example:

▪ Signal transmission over a communication channel.

▪ Amplifying systems.

• Distortionless transmission implies that the output is the same as the
input apart from:

▪ A constant multiplicative factor.

▪ A delay.

• Therefore, if 𝑥(𝑡) is the input and 𝑦(𝑡) is the output, distortionless

transmission implies that:
𝑦 𝑡 = 𝐺0𝑥(𝑡 − 𝑡𝑑)

Signal distortion during transmission



• Distortionless transmission of an input 𝑥(𝑡) implies that:
𝑦 𝑡 = 𝐺0𝑥(𝑡 − 𝑡𝑑)

• Taking the Fourier transform of the above yields:

𝑌 𝜔 = 𝐺0𝑋(𝜔)𝑒
−𝑗𝜔𝑡𝑑

• Knowing that:

𝑌 𝜔 = 𝐻(𝜔)𝑋(𝜔)

we can write that the transfer function of a distortionless system is:

𝐻 𝜔 = 𝐺0𝑒
−𝑗𝜔𝑡𝑑

▪ 𝐻 𝜔 = 𝐺0 amplitude response must be a constant

▪ ∠𝐻 𝜔 = −𝜔𝑡𝑑 phase response must be a linear function of 𝜔 with

slope −𝑡𝑑 which also passes through the origin

Signal distortion during transmission cont.



• In order to assess phase linearity we can find the slope of ∠𝐻 𝜔 as a

function of frequency and see whether it is constant. We define:

𝑡𝑔 𝜔 = −
𝑑

𝑑𝜔
∠𝐻 𝜔

• 𝑡𝑔 𝜔 is called group delay or envelope delay.

• Note that a phase response given by ∠𝐻 𝜔 = 𝜙0 − 𝜔𝑡𝑑 also has a
constant group delay. From now on we can write 𝑡𝑑 = 𝑡𝑔.

• Therefore, the condition for phase linearity by testing whether the
group delay is constant is more relaxed.

• Human ears are sensitive to amplitude distortion, but not phase
distortion.

• Human eyes are sensitive to phase distortion, but not so much to
amplitude distortion (recall the experiment where we have combined
the amplitude of one image and the phase of another).

Group delay



• For lowpass systems, the phase must be linear over the band of interest
and also must pass through the origin.

• For bandpass systems, the phase must be linear over the band of
interest but does not have to pass through the origin.

• Consider the following bandpass LTI system.

• The pass band is of width 2𝑊 centred at 𝜔𝑐.

Bandpass systems and group delay



• Within the pass band and for 𝜔 ≥ 0 the phase can be described as
∠𝐻 𝜔 = 𝜙0 − 𝜔𝑡𝑔

• The phase is always an odd function, and therefore,
∠𝐻 −𝜔 = −∠𝐻 𝜔 = −(𝜙0 −𝜔𝑡𝑔) = −𝜙0 + 𝜔𝑡𝑔

• We can write:

∠𝐻 𝜔 = ൝
𝜙0 − 𝜔𝑡𝑔 𝜔 ≥ 0

−𝜙0 − 𝜔𝑡𝑔 𝜔 < 0

• For a distortionless system we have 𝐻 𝜔 = 𝐺𝑜𝑒
𝑗(𝜙0−𝜔𝑡𝑔), 𝜔 ≥ 0.

Bandpass systems and group delay cont.



• Consider the distortionless system 𝐻 𝜔 = 𝐺𝑜𝑒
𝑗(𝜙0−𝜔𝑡𝑔), 𝜔 ≥ 0.

• Consider the bandpass modulated signal 𝑧 𝑡 = 𝑥 𝑡 cos𝜔𝑐𝑡 centred at 𝜔𝑐

where 𝑥(𝑡) is a lowpass signal with bandwidth 𝑊.

▪ cos𝜔𝑐𝑡 is the carrier of 𝑧(𝑡)

▪ 𝑥(𝑡) is the envelope of 𝑧(𝑡)

• Consider now the input Ƹ𝑧 𝑡 = 𝑥 𝑡 𝑒𝑗𝜔𝑐𝑡 with መ𝑍 𝜔 = 𝑋(𝜔 − 𝜔𝑐).

• The corresponding output is:

෠𝑌 𝜔 = 𝐻(𝜔) መ𝑍 𝜔 = 𝐻(𝜔)𝑋(𝜔 − 𝜔𝑐)

෠𝑌 𝜔 = 𝐺0𝑋 𝜔 − 𝜔𝑐 𝑒𝑗(𝜙0−𝜔𝑡𝑔) = 𝐺0𝑒
𝑗𝜙0𝑋(𝜔 − 𝜔𝑐)𝑒

−𝑗𝜔𝑡𝑔

• We use the properties:

▪ If 𝑥 𝑡 ⇔ 𝑋 𝜔 then:

𝑥 𝑡 − 𝑡0 ⇔ 𝑋 𝜔 𝑒−𝑗𝜔𝑡0 and 𝑥 𝑡 𝑒𝑗𝜔0𝑡 ⇔ 𝑋 𝜔 −𝜔0 .

• We obtain: ො𝑦 𝑡 = 𝐺0𝑒
𝑗𝜙0𝑥 𝑡 − 𝑡𝑔 𝑒𝑗𝜔𝑐(𝑡−𝑡𝑔) = 𝐺0𝑥 𝑡 − 𝑡𝑔 𝑒𝑗[𝜔𝑐 𝑡−𝑡𝑔 +𝜙0]

Bandpass systems and group delay cont.



• Consider the distortionless system 𝐻 𝜔 = 𝐺𝑜𝑒
𝑗(𝜙0−𝜔𝑡𝑔), 𝜔 ≥ 0.

• We showed that for the input Ƹ𝑧 𝑡 = 𝑥 𝑡 𝑒𝑗𝜔𝑐𝑡 the output is:

ො𝑦 𝑡 = 𝐺0𝑥 𝑡 − 𝑡𝑔 𝑒𝑗[𝜔𝑐 𝑡−𝑡𝑔 +𝜙0]

• For the input 𝑧 𝑡 = 𝑥 𝑡 cos𝜔𝑐𝑡 = Re{ Ƹ𝑧 𝑡 } the output is

𝑦 𝑡 = Re ො𝑦 𝑡 = Re 𝐺0𝑥 𝑡 − 𝑡𝑔 𝑒𝑗[𝜔𝑐 𝑡−𝑡𝑔 +𝜙0]

= 𝐺0𝑥 𝑡 − 𝑡𝑔 cos[𝜔𝑐 𝑡 − 𝑡𝑔 + 𝜙0]

▪ The output envelope 𝑥 𝑡 − 𝑡𝑔 remains undistorted.

▪ The output carrier acquires an extra phase 𝜙0.

▪ In a modulation system the transmission is considered distortionless if
the envelope 𝑥(𝑡) remains undistorted. This is because the signal
information is contained solely in the envelope.

▪ Therefore, the above type of transmission is considered distortionless.

Bandpass systems and group delay cont.



• A signal 𝑧(𝑡) shown below is given by 𝑥 𝑡 cos𝜔𝑐𝑡 where 𝜔𝑐 = 2000𝜋. The
pulse 𝑥(𝑡) is a lowpass pulse of duration 0.1sec and has a bandwidth of
about 10𝐻𝑧 . This signal is passed through a filter whose frequency
response is shown below. Find and sketch the filter output 𝑦(𝑡).

• 𝑧(𝑡) is a narrow band signal with bandwidth of 20𝐻𝑧 centred around

𝑓𝑐 = 𝜔𝑐/2𝜋 = 1𝑘𝐻𝑧.

• The gain at the centre frequency of 1𝑘𝐻𝑧 is 2.

• The group delay is: 𝑡𝑔 =
2.4𝜋−0.4𝜋

2000𝜋
= 10−3. It can be found by drawing the

tangent at 𝜔𝑐.

• The intercept along the vertical axis by the tangent is 𝜙0 = −0.4𝜋.

Example



• Based on the above analysis the output of the system is:

𝑦 𝑡 = 𝐺0𝑥 𝑡 − 𝑡𝑔 cos[𝜔𝑐 𝑡 − 𝑡𝑔 + 𝜙0]
= 2𝑥 𝑡 − 10−3 cos[2000𝜋 𝑡 − 10−3 − 0.4𝜋]

Example cont.



• The energy of a signal 𝑥(𝑡) can be derived either in time or in frequency
domain:

𝐸𝑥 = න
𝑡=−∞

∞

𝑥(𝑡) 2𝑑𝑡 =
1

2𝜋
න
𝜔=−∞

∞

𝑋(𝜔) 2𝑑𝜔

Proof

𝐸𝑥 = න
𝑡=−∞

∞

𝑥(𝑡)𝑥∗(𝑡)𝑑𝑡 = න
𝑡=−∞

∞

𝑥(𝑡)
1

2𝜋
න
𝜔=−∞

∞

𝑋∗ 𝜔 𝑒−𝑗𝜔𝑡𝑑𝜔 𝑑𝑡

=
1

2𝜋
∞−=𝜔׬
∞

𝑋∗ 𝜔 ∞−=𝑡׬
∞

𝑥(𝑡)𝑒−𝑗𝜔𝑡𝑑𝑡 𝑑𝜔

=
1

2𝜋
∞−=𝜔׬
∞

𝑋∗ 𝜔 𝑋(𝜔)𝑑𝜔 =
1

2𝜋
∞−=𝜔׬
∞

𝑋(𝜔) 2𝑑𝜔

Signal energy: Parseval’s theorem



• The total energy of a signal is the area under the curve 𝑋(𝜔) 2 divided
by 2𝜋.

• The energy over a small frequency band Δ𝜔, where Δ𝜔 → 0 is:

Δ𝐸𝑥 =
1

2𝜋
𝑋(𝜔) 2 Δ𝜔 = 𝑋(𝜔) 2 Δ𝑓, Δ𝑓 =

Δ𝜔

2𝜋
𝐻𝑧

• The function 𝑋(𝜔) 2 is the energy spectral density (per unit bandwidth in
𝐻𝑧).

Signal energy: Parseval’s theorem cont.



• If 𝑥(𝑡) is a real signal, then 𝑋(𝜔) and 𝑋(−𝜔) are conjugate.

• In that case 𝑋(𝜔) 2 is even, since 𝑋(𝜔) 2 = 𝑋 𝜔 𝑋∗ 𝜔 = 𝑋 𝜔 𝑋 −𝜔 .

• Therefore,

𝐸𝑥 =
1

2𝜋
∞−=𝜔׬
∞

𝑋(𝜔) 2𝑑𝜔 = 2
1

2𝜋
𝜔=0׬
∞

𝑋(𝜔) 2𝑑𝜔

=
1

𝜋
න
𝜔=0

∞

𝑋(𝜔) 2𝑑𝜔

• Consequently, in a real signal the energy contributed by all spectral
components between 𝜔1 and 𝜔2 is:

Δ𝐸𝑥 =
1

𝜋
𝜔1׬

𝜔2 𝑋(𝜔) 2𝑑𝜔

Energy spectral density of a real signal



• Extracting a segment of a signal in time is the same as multiplying the
signal with a rectangular window:

Windowing and its effect

X *

Spectral spreading

Energy spread out 
from 𝜔0 to width of 
≈ 2𝜋/𝑇.

Leakage

Energy leaks out 

from the mainlobe to 

the sidelobes.



• Using the previous example as a basis to understand windowing effects
observe that:

▪ If 𝑥(𝑡) has two spectral components of frequencies which differ by

less than
4𝜋

𝑇
𝑟𝑎𝑑/𝑠𝑒𝑐 (

2

𝑇
𝐻𝑧 ) they will be indistinguishable in the

truncated signal.

▪ The result is loss of spectral resolution.

Windowing and its effect cont.



• Amplitude spectrum of a rectangular window in 𝑑𝐵.

Mainlobe and sidelobes of a rectangular window in dB



1. Make mainlobe width as narrow as possible; this implies as wide a
window as possible.

2. Avoid big discontinuity in the windowing function to reduce leakage
(i.e., high frequency sidelobes).

3. 1) and 2) above are incompatible – therefore needs a compromise.

Commonly used windows apart from the rectangular window are:

• Hamming windows

• Hanning windows

• Barlett windows

• Blackman windows

• Kaiser windows

Remedies for side effects of truncation



Comparison of different windowing functions


