Imperial College
London

DSP & Digital Filters

Lecture 1 z-Transform

DR TANIA STATHAKI

READER (ASSOCIATE PROFESSOR) IN SIGNAL PROCESSING
IMPERIAL COLLEGE LONDON



Imperial College

Gontinuous-time signals

* Recall that in order to describe a continuous-time signal x(t) in frequency
domain we use:

U The Continuous-Time Fourier Transform (or Fourier Transform):

X(w) = f x(t)e J@tdt

— 00

0 The Laplace Transform

(0]

X(s) = j x(t)e Stdt
 The above transforms and their basic properties are considered known in
this course.

» If you have doubts please consult any book on Signals and Systems.
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Discrete-time signals
The z-transform derived from the Laplace transform

Consider a discrete-time signal x(t) sampled every T seconds.
x(t) =xo6() + x,8(t—T) + x,6(t —2T) + x36(t — 3T) + -~
Recall that in the Laplace domain we have:
L{6()} =1
LIt —T)}=e ST
Therefore, the Laplace transform of x(t) is:
X(s) =xp+ x;e75T + x,e752T 4 x3e7537 4 ...
Now define z = e5T = e(@H )T = 9T coswT + jeT sinwT.
Finally, define
X[z =xg+ x127 4+ x27% 4 x3273 + -+
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z~1: the sampling period delay operator

From the Laplace time-shift property, we know that an additional term
z =e5T in the Laplace domain, corresponds to time-advance by T
seconds (T is the sampling period) of the original function in time.

Accordingly, z7! = e¢~5T corresponds to a time-delay of one sampling
period.

As a result, all sampled data (and discrete-time systems) can be
expressed in terms of the variable z.

More formally, the unilateral z —transform of a causal sampled
sequence:

IS given by:
X[zl =xp+ x127 Y + %272+ x327 3 + - = X2 s x[n]z™™, x,, = x[n]
The bilateral z —transform for any sampled sequence is:

X[z] = z x[n]z™"

n=-—oo
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Example: Find the z —transformof x| n] = y"u[n]

Find the z —transform of the causal signal y"u[n], where y is a constant.
By definition:

We apply the geometric progression formula:

1+x+x?+x3+-= x|l < 1
1—x
Therefore,
__1 0
X[Z]_l—g’ . <1
VA
i~ |z| > |yl

We notice that the z —transform exists for certain values of z. These values
form the so called Region-of-Convergence (ROC) of the transform.
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Example: Find the z —transform of x| n| = y"u[n] cont.

Observe that a simple rational equation in z-domain corresponds to an
Infinite sequence of samples in time-domain.

The figures below depict the signal in time (left) for |y| < 1 and the ROC,
shown with the shaded area, within the z —plane.

y*uln]
¢




Imperial College

Z
Z Yl

In that case the ROC is the intersection of the ROCs of the individual
terms, i.e., the intersection of the sets |z| > |y;| i.e., ROC: |z| > |Vmax]

In case that x|n] is the impulse response of a system, the transfer function

of the system is the rational function X(z) = ¥~ , Zy with poles y;.

Consider the causal signal x[n] = Y&, yu[n] with X(z) =

The above analysis yields the following properties regarding the ROC:

PROPERTY:

If x[n] is a causal signal, the ROC of its z —transform is |z| > |V max|
With ymax the maximum magnitude pole of the z —transform.

A In the general case of x[n] being a right-sided signal (RSS) the
ROC is as above but might not include o (think why).

PROPERTY:
No pole can exist in ROC.
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Generic form of a causal signal cont.

The signal x[n] = XX, y*u[n] is bounded only if |y;| < 1 Vi or |ymax] < 1.

In that case the ROC includes a circle with radius equal to 1. This is known
as the unit circle.

The above observation yields the following property:

PROPERTY:

If the ROC of X(z) includes the unit circle in z —plane, then the signal
In time is bounded and its Discrete Time Fourier Transform exists.

In case that y"u[n] is part of a causal system’s impulse response, we see
that the condition |y| < 1 must hold. This is because, since lim (y)™ = oo,

n—0o

for |y| > 1, the system will be unstable in that case.

Therefore, in causal systems, stability requires that the ROC of the
system’s transfer function includes the unit circle.
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Example: Find the z —transformof x| n| = —y"u[—n — 1]

Find the z —transform of the anti-causal signal —y™u[—n — 1], where y is a
constant.

By definition:
(0'e) -1 (0'0) (0'e)
X[z] = z —yMu[-n—-1]z7" = z —y"z~ z A z <E>
n=-—oo n=—oo n=1 n=1 14

() (-> )

Z

<1
14

)

Xlz] == (E) 1i5’

14

-- i (Z)
]/n=0 )/
Therefore,

VA
= = |z| < |yl

We notice that the z —transform exists for certain values of z, which consist
the complement of the ROC of the function y™u[n] with respect to the
z —plane.
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Consider the anti-causal signal x[n] = Y1, —y/*u[—n — 1] with

z —transform X (z) = YK 1ZZy

In that case the ROC is the intersection of the sets |z| < |y;], i.e., ROC:
12| < [Yminl

In case that x[n] is the impulse response of a system, the transfer function

of the system is the rational function X(z) = ¥~ , Zy with poles y;.

The above analysis yield the following property regarding ROCs:

PROPERTY:

If x|n] is an anti-causal signal, the ROC of its z —transform is |z| <
|Vminl With ymin the minimum magnitude pole of the z —transform.

d In the general case of x|[n] being a left-sided signal (LSS) the ROC
IS as above but might not include 0 (think why).
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We proved that the following two functions:
= The causal function y™u[n] and
= the anti-causal function —y"u[—n — 1] have:
% The same analytical expression for their z —transforms.

% Complementary ROCs. More specifically, the union of their ROCS
forms the entire z —plane.

The above observations verify that the analytical expression alone is not
sufficient to define the z —transform of a signal. The ROC is also required.
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Two-sided signals

« Example: Find the z —transform of the two-sided signal:
x[n] = 2"u[n] — 4"u[—n — 1]
Based on the previous analysis we have:

zZ

X[z]=—=—+-—=,ROC: |z| >2Nn|z| <40rROC: 2 < |z| < 4
zZ—2 zZ—4

 Example: Find the z —transform of the two-sided signal:
x[n] = 4"u[n] — 2"u[—n — 1]
Based on the previous analysis we have:

zZ

X[z] =—=—+-=,ROC: |z| >4n|z| <2 or ROC: ¢
zZ—2 Z—4

PROPERTY:

If x|n] is two-sided signal then the ROC of its z —transform is of the
form:

d y; <|z| <y, with y4, y, poles of the system or
d 0
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Example: Find the z —transform of 5[n] and u[n]

« By definition §[0] =1 and d[n] =0 forn # 0.

25 5[0]z° = 1

n=-—oo

« By definition u[n] =1 forn > 0.

(00} — (¢') —_ 1
X[Z] = Zn:—oou[n]z n= n=02% "= 71
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Example: Find the z —transform of cosSnu|n|

We write cosfin = %(ejﬁ" + e‘jﬁ").
From previous analysis we showed that:
yhuln] & 7=, |zl > Iyl

Hence,

etiFnyn] & 1z| > |e/F| =1

z—etJp’

Therefore,

X[Z] _ 1[ z z z(z—cosf)

= : —| = z[>1
2 lz—elB * z—e~JB zz—chosB+1’| |
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z —transform of 9 Impuises

« Find the z —transform of the signal depicted in the figure.

l lx[n]

il

of 1 2 3 4 = = ,_ 5

« By definition:

4
1 1 1 1

Xzl = 14—+t =) ()=
Z Z Z Z o

1—(2_1)5_ Z
1—2z71  z-1

(1-27°)
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Inverse z —transform

As with other transforms, inverse z —transform is used to derive x[n]
from X|[z], and is formally defined as:
1

= T X[z]z" tdz

x|n]
Here the symbol ¢ indicates an integration in counter-clockwise
direction around a circle within the ROC and z = Re/?.

Such contour integral is difficult to evaluate (but could be done using
Cauchy’s residue theorem), therefore we often use other techniques to
obtain the inverse z —transform.

One such technique is to use a z —transform pairs Table shown in the
last two slides with partial fraction expansion.
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Inverse z —transform: Prooif

Proof:

1
21j

X[z])z™ 1dZ—% ( Z ) z" ldz

=y x[m] 2n1 gﬁz" m-ldz = Yo __ox[m]8[n—m] = x[n]

d

For the above we used the Cauchy’s theorem:

—§zk~1dz = §[k] for z = Re’® anti-clockwise.

21j
E —]Ref‘9 gﬁzk ldz = E Rk lej(k=1)0 jRei9qh =
f—n ;foefke dg = R* 8[k]
0 k+0
R™ 21 k@ _
[ 7 J6=0° do R—k2n=Rk k = ]



Imperial College

Find the inverse z —transform in the case of real unique poles

* Find the inverse z —transform of X|[z] = bz— 10
(z—2)(Z-3)
Solution
X[z] 8z — 19 (19) 3/2 5/3
Z Z — T T4
=674 +

Z =Z(Z—2)(Z—3)_ Z z—2 z-—3

Xzl = -5 +3(5) +3(5)

By using the simple transforms that we derived previously we get:
19 3 5
x[n] = ——06[n] + [E 2" + 53”] uln]
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Find the inverse z —transform in the case of real repeated poles

z(2z%-11z+12)
(z—-1)(z-2)3

* Find the inverse z —transform of X[z] =

Solution

X[z] _ (2z%-11z+12) _ k Q | _a @
z  (z-1)(z-2)3  z-1 (2-2)3  (z-2)?2 (z-2)

= We use the so called covering method to find k and a,
(2z2 — 11z + 12)

( Y(z —2)3
(2z% — 11z + 12)
(z — 1)(3-,,2?3 s

z=1

Ag =

The shaded areas above indicate that they are excluded from the entire
function when the specific value of z is applied.
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Find the inverse z —transform in the case of real repeated poles cont.

2_
. Find the inverse z —transform of X[z] = 222 —112+12)

(z—1)(z-2)3
Solution
X[z] _ (2z%-11z+12) _ -3 -2 I
z  (z-1)(z-2)3  z-1 (2-2)3  (z-2)?2 (z-2)
= To find a, we multiply both sides of the above equation with z and let
Z — 00,
0=—-3-0+4+0+a,>a,=3
= Tofinda, letz— 0.
2oz 8 254 =1
8 4 4 2
X[z] (2z%-11z+12) -3 2 1 3
pu— o —_— — z
Z (z—-1)(z-2)3 z—1 (z-2)3 (z-2)%2 (z-2)
-3z 2z VA 3z
X[Z] T z-1 (z-2)3 B (z—2)2 + (z—2)
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Find the inverse z —transform in the case of real repeated poles cont.

-3z . 2z _ Z n 3z
z—1 (z-2)3 (z-2)2 (z-2)
We use the following properties:

X[z] =

= yMuln] Z_

z=y
n(n—-1)(n-2)..(n-m+1) 4, Z
e viuln] & ——
2z _ . nn-1) p _ n(n—l). n
[ (Z 2)3 ( )(Z 2)2+1 <3( 2) 2291 y U,[Tl] - 2 8 2 u[n]

Therefore,
x[n] =[-3-1" — 2@ - 2" _2 2"+ 3 - 2™ uln]

— [3 +%(n2 +n— 12)2"] u[n]
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Find the inverse z —transform in the case of complex poles

Find the inverse z —transform of X[z] = —2cet7)
(z—1)(z#—6z+25)

Solution
2z(3z 4+ 17)

(z—1)(z-3—-j4)(z—-3+j4)
X[z] _ (2z%-11z+12) _ k ao a; a,
z  (z-1D(z-2)3 z-1 + (z—2)3 + (z—2)>2 + (z—2)
Whenever we encounter a complex pole we need to use a special partial
fraction method called guadratic factors method.
X[z] 2(3z+17) 2 Az+B

z  (z-1)(z2-6z+25) z-1 2z2-62z+25
We multiply both sides with z and let z — oo:
0=24+A=>A4A=-2

X[z] =

Therefore,

2(3z+17) 2 —27+B
(z—1)(z2-6z+25) z-1 2z2-6z+25
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Find the inverse z —transform in the case of complex poles cont.

2(3z+17) 2 —27+B
(z—1)(z%—62z+25) z—1 z?%-6z+25

To find B we let z = 0:

- 24+25B=16
25 25
X[z] _ 2 2—22+16 N [Z] _ 2Z z(2—22+16)
z z—1 z“—6z+25 z—-1 Z“—6z+25
We use the following property:
Z(Az+B)

rly|™* cos(fn + 6) u[n] withA = -2, B =16,a = -3, |y| =5.

z%2+2az+|y|?

= \/A2|y|2+B2—2AaB _ \/4-25+256—2-(_2)'(_3)'16 =3.2,8 = cos 12 = 0.927rad,

ly|?2—a? 25-9 lyl
. -1 Aa—B _
6 = tan AT 2.246rad.

Therefore, x[n] = [2 + 3.2 c0s(0.927n — 2.246)]u[n]
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z —ftransform Tahle

No.

x[n]
é[n — n]

uln]

nuln]

n’uln]

y"uln]
" luln — 1]

ny"uln]

X[z]

(z —1)?
z(z+ 1)
(z—1)*
z2(Z2+4z+1)
(z—-1)*
2=y
1
=Y
Yz
(z —y¥
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Z —transform Tahle
No.  x[n] X[z]
— 13l = D » = e 1
10 n(n )(n oo (n—m+ )y"u[n] Z
}’.rum! (Z . y)m-l—l
z(z = |y| cos B)

lla |lv|" cos Bn un] -

yI"cos B Z— @lylcos Bz + Iy

. zly|sin B

11b ly|" sin Bnuln] - -

T = @lylcos f)z + 1P

rzlzcos 8 — |y|cos (B — 6)]

12a rlv|" cos (Bn + @)un] -~ =

Iy[* cos (B 2= @lylcos Bz + 7P

. 0.5re’?)z 0.5re ")z
12b rlyl cos (Bn +O)uln]l  y = |yle POTE B e )
z—vy 2=
z(Az + B)

12¢ " cos + 6

rly[ cos(fn +6)uln] 22+ 2az + |y|?

—a Aa — B

o \/A-Iy-+B-—2AaB 8 = cos-! P

F}"|1“ﬂ2 4 Au"|y|3—a3



