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Eigenvalues and eigenvectors

• In this lecture we will introduce a new transform, the so called 

Karhunen-Loeve Transform or KLT.

• The concepts of eigenvalues and eigenvectors are important for 

understanding the KLT.

• If 𝐶 is a matrix of dimension 𝑛 × 𝑛, then a scalar 𝜆 is called an 

eigenvalue of 𝐶 if there is a non-zero vector 𝑒 in 𝑅𝑛 such that:

𝐶𝑒 = 𝜆𝑒

• The vector 𝑒 is called an eigenvector of matix 𝐶 corresponding to the 

eigenvalue 𝜆.



Definition of a population of vectors

• Consider a population of random vectors of the following form:

𝑥 =

𝑥1
𝑥2
⋮
𝑥𝑛

• The quantity 𝑥𝑖 may represent the value (grey level) of an image 𝑖. We 

have 𝑛 images, all of equal size 𝑀 ×𝑁. Each of the above vectors refers to 

the exact same location across the 𝑛 images (look at the next slide).

• Therefore, it is more accurate to write 

𝑥(𝑘,𝑙) =

𝑥1(𝑘, 𝑙)
𝑥2(𝑘, 𝑙)

⋮
𝑥𝑛(𝑘, 𝑙)

with 𝑘 ∈ 0…𝑀 − 1 and 𝑙 ∈ 0…𝑁 − 1 . 



Depiction of previous scenario with 𝒏 = 𝟔



Mean of the population

• The mean vectors of the population are defined as:

𝑚𝑥(𝑘,𝑙) = 𝐸{𝑥(𝑘,𝑙)} = 𝑚1,(𝑘,𝑙) 𝑚2,(𝑘,𝑙) … 𝑚𝑛,(𝑘,𝑙) 𝑇

• As you can see, we assume that the mean of each pixel (𝑘, 𝑙) in each 

image 𝑖 is different.

• In that case we would require a large number of realizations of each 

image 𝑖 in order to calculate the means 𝑚𝑖,(𝑘,𝑙) .

• However, if we assume that each image signal is ergodic we can 

calculate a single mean value for all pixels from a single realization 

using the entire collection of pixels of this particular image. In that case:

𝑚𝑖,(𝑘,𝑙) = 𝑚𝑖 =
1

𝑀𝑁
σ𝑘=0
𝑀−1σ𝑙=0

𝑁−1 𝑥𝑖,(𝑘,𝑙)

• 𝑚𝑥(𝑘,𝑙) = 𝑚𝑥 = 𝑚1 𝑚2 … 𝑚𝑛
𝑇



Covariance of the population

• The covariance matrix of the population is defined as:

𝐶𝑥 = 𝐸{(𝑥 − 𝑚𝑥)(𝑥 − 𝑚𝑥)
𝑇}

𝐶𝑥 is of dimension 𝑛 × 𝑛.

• Let us recall that:

o In probability theory and statistics, a covariance matrix (known also 

as dispersion matrix or variance-covariance matrix) is a matrix 

whose element in the (𝑖, 𝑗) position is the covariance between the 

𝑖 −th and 𝑗 −th elements of a random vector (a vector whose 

elements are random variables).

o Because the covariance of the 𝑖 −th random variable with itself is 

simply that random variable’s variance, each element on the principle 

diagonal of the covariance matrix is the variance of one of the 

random variables.

• Every covariance matrix is symmetric and positive semi-definite.

• Recall that for every symmetric matrix of dimension 𝑛 × 𝑛 we can always 

find a set of 𝑛 orthonormal eigenvectors.



Karhunen-Loeve Transform

• Let 𝐴 be a matrix whose rows are formed from the eigenvectors of the 

covariance matrix 𝐶𝑥 of the population of vectors 𝑥.

• The eigenvectors are ordered so that the first row of 𝐴 is the eigenvector 

corresponding to the largest eigenvalue of 𝐶𝑥 and the last row is the 

eigenvector corresponding to the smallest eigenvalue of 𝐶𝑥 .

• We define the following transform:

𝑦 = 𝐴(𝑥 − 𝑚𝑥)

• It is called the Karhunen-Loeve Transform (KLT).

• This transform takes a vector 𝑥 and converts it into a vector 𝑦.

• We will see shortly that the new population of vectors 𝑦 possesses a 

couple of very useful properties.



Mean and covariance of the new population

• You can demonstrate very easily that

𝑚𝑦 = 𝐸 𝑦 = 0

Proof

𝐸 𝑦 = 𝐸 𝐴 𝑥 −𝑚𝑥 = 𝐴𝐸 𝑥 −𝑚𝑥 = 𝐴(𝐸 𝑥 − 𝐸 𝑚𝑥 )

𝐸 𝑚𝑥 = 𝑚𝑥, 𝐸 𝑥 = 𝑚𝑥

𝑚𝑦 = 𝐸 𝑦 = 𝐴(𝐸 𝑥 − 𝐸 𝑚𝑥 ) = 𝐴 0 − 0 = 0

• Let us find the covariance matrix of the population 𝑦. You can demonstrate 

very easily that 𝐶𝑦 = 𝐴𝐶𝑥𝐴
𝑇.

Proof

𝐶𝑦 = 𝐸 𝑦 −𝑚𝑦 𝑦 −𝑚𝑦

𝑇
= 𝐸 𝑦𝑦𝑇 = 𝐸 𝐴(𝑥 − 𝑚𝑥) 𝐴(𝑥 − 𝑚𝑥)

𝑇

= 𝐸 𝐴 𝑥 −𝑚𝑥 𝑥 − 𝑚𝑥
𝑇
𝐴𝑇 = 𝐴 𝐸 𝑥 −𝑚𝑥 𝑥 − 𝑚𝑥

𝑇
𝐴𝑇.

Therefore, 𝐶𝑦 = 𝐴𝐶𝑥𝐴
𝑇 and is of dimension 𝑛 × 𝑛 as 𝐶𝑥.



Covariance of the new population

• Let us further analyze the relationship 𝐶𝑦 = 𝐴𝐶𝑥𝐴
𝑇.

• Suppose that the eigenvectors of matrix 𝐶𝑥 are the column vectors 

𝑒1, 𝑒2, … , 𝑒𝑛.

• We assume that the eigenvectors of the covariance matrix 𝐶𝑥 of 

dimension 𝑛 × 𝑛 form an orthonormal set in the 𝑛 −dimensional space.

• From the definition of matrix 𝐴 we know that

𝐴 =

𝑒1
𝑇

𝑒2
𝑇

⋮
𝑒𝑛

𝑇

and 𝐴𝑇 =

𝑒1
𝑇

𝑒2
𝑇

⋮
𝑒𝑛

𝑇

𝑇

= 𝑒1 𝑒2 … 𝑒𝑛

• 𝐶𝑥𝐴
𝑇 = 𝐶𝑥 𝑒1 𝑒2 … 𝑒𝑛 = 𝐶𝑥𝑒1 𝐶𝑥𝑒2 … 𝐶𝑥𝑒𝑛 =

𝜆1𝑒1 𝜆2𝑒2 … 𝜆𝑛𝑒𝑛



Covariance of the new population cont.

• From the previous analysis we have

𝐶𝑦 = 𝐴𝐶𝑥 𝐴
𝑇 =

𝑒1
𝑇

𝑒2
𝑇

⋮
𝑒𝑛

𝑇

𝜆1𝑒1 𝜆2𝑒2 … 𝜆𝑛𝑒𝑛

• 𝑒𝑖
𝑇 𝑒𝑗 = ቊ

1 𝑖 = 𝑗
0 𝑖 ≠ 𝑗

since the set of column vectors 𝑒𝑗 , 𝑖 = 1, … , 𝑛 consists a 

set of orthonormal eigenvectors of the covariance matrix 𝐶𝑥.

• From the above analysis it is straightforward that:

𝐶𝑦 =
𝜆1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝜆𝑛



Observations regarding the new population

• In this transformation we started with vectors 𝑥 and we created vectors 𝑦.

• Since both original and transformed vectors consist of the values of 𝑛
images at a specific location, we see that starting from 𝑛 images we 

create 𝑛 new images by assembling properly all the vectors of population 

𝑦.

• Looking at the form of 𝐶𝑦 we immediately see that the new images are 

decorrelated to each other.

• Furthermore, since 𝜆1 ≥ 𝜆2 ≥ ⋯ ≥ 𝜆𝑛 we see that as the index of a new 

image increases, its variance decreases. Recall that from the form of 𝐶𝑦

we see that the variance of image 𝑖 in the new set is 𝜆𝑖.
• It is possible that a couple of the last images in the new set have very 

small variance. They are almost constant images.

• In general, a signal with small variance is a slowly varying signal. This 

type of signal does not offer any information.

• We can discard the images which have low variance in order to achieve

data compression.



• To reconstruct the original vectors 𝑥 from the transformed vectors 𝑦 we 

note that 𝐴−1 = 𝐴𝑇.

• Therefore, starting from the forward transform 𝑦 = 𝐴(𝑥 − 𝑚𝑥) we obtain 

the inverse Karhunen-Loeve transform as follows:

𝑦 = 𝐴 𝑥 −𝑚𝑥 ⇒ 𝐴𝑇𝑦 = 𝑥 −𝑚𝑥 ⇒ 𝑥 = 𝐴𝑇𝑦 + 𝑚𝑥

• We now form a “cropped” matrix 𝐴𝐾 of size 𝐾 × 𝑛 using only the 𝐾
eigenvectors of 𝐶𝑥 which correspond to the 𝐾 largest eigenvalues. The 

vectors of the new population are now of size 𝐾 × 1 and are denoted by 

𝑦𝐾.

• By using the inverse transform in the later case we obtain an 

approximation of the original vectors and therefore the original images, as 

follows:

ො𝑥 = 𝐴𝐾
𝑇𝑦𝐾 + 𝑚𝑥

Inverse Karhunen-Loeve transform



• It can be proven that the Mean Square Error (MSE) between the perfect 

reconstruction 𝑥 and the approximate reconstruction ො𝑥 is given by the 

expression:

𝑒𝑀𝑆𝐸 = 𝑥 − ො𝑥
2
= σ𝑗=1

𝑛 𝜆𝑗 − σ𝑗=1
𝐾 𝜆𝑗 = σ𝑗=𝐾+1

𝑛 𝜆𝑗
We see that the error is the sum of the eigenvalues whose eigenvectors

we ignored in the vector reconstruction.

Mean squared error of approximate reconstruction



Drawbacks of the KL Transform

Despite its favourable theoretical properties, the KLT is not used in often 

practice for the following reasons.

• Its basis functions depend on the covariance matrix of the image, and 

hence they have to recomputed and transmitted for every image. It is, 

therefore, what we call data dependent.

• Perfect decorrelation is not possible, since images can rarely be 

modelled as realisations of ergodic fields.

• There are no fast computational algorithms for its implementation.

• Multiple realizations of an image are required. This is not always 

possible to achieve before hand.



Example of the KLT: Original images

(Images from Rafael C. Gonzalez and Richard E. 

Wood, Digital Image Processing, 2nd Edition.

6 spectral images

from an airborne

Scanner.



(Images from Rafael C. Gonzalez and Richard E. 

Wood, Digital Image Processing, 2nd Edition.

Example: Principal Components

Component l

1 3210

2 931.4

3 118.5

4 83.88

5 64.00

6 13.40



Example: Principal Components (cont.)

Original images (channels)
Six principal components

after KL transform



Example: Original Images (left)

and  Principal Components (right)


