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By applying the Parseval’s theorem, show that

න
−∞

∞

sinc2(𝑘𝑥)𝑑𝑥 =
𝜋

𝑘

Solution

Consider the function 𝑓 𝑡 = sinc(𝑘𝑡). In that case we know that the Fourier 

transform is:

𝐹 𝜔 =
𝜋

𝑘
rect(

𝜔

2𝑘
)

∞−׬
∞

sinc2(𝑘𝑥)𝑑𝑥 is the energy of 𝑓 𝑡 .

Based on Parseval’s Theorem we have that:

∞−׬
∞

sinc2(𝑘𝑥)𝑑𝑥 =
1

2𝜋
∞−׬
∞ 𝜋2

𝑘2
rect(

𝜔

2𝑘
)
2
𝑑𝜔 =

𝜋

2𝑘2
2𝑘 =

𝜋

𝑘

Problem 1



Figures (a) and (b) show the Fourier spectra of signals 𝑓1(𝑡) and 𝑓2(𝑡).
Determine the Nyquist sampling rates for the following signals. (Hint: Use

convolution in frequency and the width property of the convolution.)

(a) 𝑓1(𝑡)

Solution

The bandwidth of 𝑓1(𝑡) is 100000Hz. Therefore, the Nyquist rate is 

200000Hz or 200kHz.

Problem 2 (a)



(b) 𝑓2(𝑡)

Solution

The bandwidth of 𝑓2(𝑡) is 150kHz. Therefore, the Nyquist rate is 

300kHz.

Problem 2 (b)



(c) 𝑓1
2(𝑡)

Solution

ℱ 𝑓1
2 𝑡 =

1

2𝜋
𝐹1(𝜔) ∗ 𝐹1(𝜔)

Due to the above relationship in the frequency domain, we see that the 

bandwidth of 𝑓1
2(𝑡) is twice the bandwidth of 𝑓1(𝑡), i.e., it is 200kHz. 

Therefore, the Nyquist rate is 400kHz.

Problem 2 (c)



(d) 𝑓2
3(𝑡)

Solution

ℱ 𝑓2
3 𝑡 = ℱ 𝑓2

2 𝑡 𝑓2(𝑡) =
1

2𝜋
ℱ 𝑓2

2 𝑡 ∗ 𝐹2(𝜔)

1

2𝜋
(
1

2𝜋
𝐹2 𝜔 ∗ 𝐹2 𝜔 ) ∗ 𝐹2 𝜔 =

1

4𝜋2
𝐹2 𝜔 ∗ 𝐹2 𝜔 ∗ 𝐹2 𝜔

The bandwidth of 𝑓2
3(𝑡) is three times the bandwidth of 𝑓2(𝑡), i.e., it is 

450kHz. Therefore, the Nyquist rate is 900kHz.

Problem 2 (d)



(e) 𝑓1(𝑡)𝑓2(𝑡)

Solution

ℱ 𝑓1(𝑡)𝑓2(𝑡) =
1

2𝜋
𝐹1(𝜔) ∗ 𝐹2(𝜔)

The bandwidth of 𝑓1(𝑡)𝑓2(𝑡) is the sum of the individual bandwidths of 

𝑓1(𝑡) and 𝑓2(𝑡), i.e., it is 250kHz. Therefore, the Nyquist rate is 

500kHz.

Problem 2 (e)



Signals 𝑓1 𝑡 = 104Π 104𝑡 and 𝑓2 𝑡 = δ 𝑡 are applied at the inputs of the 

ideal lowpass filters𝐻1 𝑡 = Π
𝜔

40000𝜋
and 𝐻2 𝑡 = Π

𝜔

20000𝜋
respectively.

Π 𝑡 = rect 𝑡 = ቐ
1 𝑡 < 0.5
0.5 𝑡 = 0.5
0 otherwise

The outputs 𝑦1 𝑡 and 𝑦2 𝑡 of these filters are multiplied to obtain the signal 

𝑦 𝑡 = 𝑦1 𝑡 𝑦2 𝑡 as shown in the figure below.

Problem 3



(a) Sketch 𝐹1 𝜔 and 𝐹2 𝜔 .

Solution

𝑓1 𝑡 = 104Π 104𝑡

We know that rect
𝑡

𝜏
⇔ 𝜏sinc(

𝜔𝜏

2
). Therefore, 

𝐹1 𝜔 = ℱ 104Π 104𝑡 = ℱ 104Π
𝑡
1

104

= 104
1

104
sinc

𝜔
1

104

2

= sinc
𝜔

2∙104
(shown in the figure below). Furthermore, 𝐹2 𝜔 = 1 (not 

sketched)

Problem 3 (a)

20000𝜋



(b) Sketch 𝐻1 𝜔 and 𝐻2 𝜔 .

Solution

𝐻1 𝜔 = Π
𝜔

40000𝜋
=

1
𝜔

40000𝜋
< 0.5 ⇒ 𝜔 < 20000𝜋

0.5 𝜔 = 20000𝜋
0 otherwise

Problem 3 (b)

20000𝜋



(b) Sketch 𝐻1 𝜔 and 𝐻2 𝜔 .

𝐻2 𝜔 = Π
𝜔

20000𝜋
=

1
𝜔

20000𝜋
< 0.5 ⇒ 𝜔 < 10000𝜋

0.5 𝜔 = 10000𝜋
0 otherwise

Problem 3 (b) cont.

10000𝜋



(c) Sketch 𝑌1 𝜔 and 𝑌2 𝜔 .

𝑌1 𝜔 = 𝐹1 𝜔 𝐻1 𝑡 = sinc
𝜔

2 ∙ 104
Π

𝜔

20000𝜋
(shown in the figure below)

𝑌2 𝜔 = 𝐹2 𝜔 𝐻2 𝑡 = 1 ∙ Π
𝜔

10000𝜋
= 𝐻2 𝜔 (sketched previously)

Problem 3 (c)

20000𝜋



(d) Find the Nyquist sampling rate of 𝑦1 𝑡 , 𝑦2 𝑡 and 𝑦 𝑡 = 𝑦1 𝑡 ∙ 𝑦2 𝑡

The maximum frequency of 𝑌1 𝜔 in Hz is 
20000𝜋

2𝜋
=10000Hz.

The maximum frequency of 𝑌2 𝜔 in Hz is
10000𝜋

2𝜋
=5000Hz.

Multiplication 𝑦 𝑡 = 𝑦1 𝑡 ∙ 𝑦2 𝑡 results in the convolution

𝑌 𝜔 = 𝑌1 𝜔 ∗ 𝑌2 𝜔 which has maximum frequency (bandwidth) 

10000Hz+5000Hz=15000Hz15kHz. Therefore, the Nyquist frequency is 

30kHz.

Problem 3 (d)



For the signal 𝑥 𝑡 = 𝑒−𝑎𝑡𝑢(𝑡), determine the bandwidth of an anti-aliasing 

filter if the essential bandwidth of the signal contains 99% of the signal 

energy.

Solution

𝐸𝑥 = ∞−׬
∞
(𝑒−𝑎𝑡𝑢(𝑡))2 𝑑𝑡 = 0׬

∞
𝑒−2𝑎𝑡𝑑𝑡 =

1

−2𝑎
ȁ𝑒−2𝑎𝑡 0
∞ =

1

2𝑎

𝑋 𝜔 =
1

𝑗𝜔 + 𝑎

𝐸𝑥 =
1

𝜋
0׬
∞
𝑋 𝜔 𝑋∗(𝜔)𝑑𝜔 =

1

𝜋
0׬
∞
𝑋 𝜔 2 𝑑𝜔 =

1

𝜋
0׬
∞ 1

𝜔2+𝑎2
𝑑𝜔

=
1

𝜋𝑎
ቚtan−1

𝜔

𝑎 0

∞
=

1

2𝑎

We are looking for an 𝜔 = 𝜔0 such as 
1

𝜋
0׬
𝜔0 1

𝜔2+𝑎2
𝑑𝜔 =

1

𝜋𝑎
ቚtan−1

𝜔

𝑎 0

𝜔0
=

1

𝜋𝑎
tan−1

𝜔0

𝑎
=

0.99

2𝑎
⇒ tan−1

𝜔0

𝑎
=

0.99𝜋

2
⇒ 𝜔0 = 63.66𝑎 rads/𝑠

Problem 4



A zero-order hold circuit shown in the figure below is often used to 

reconstruct a signal 𝑓(𝑡) from its samples.

(a) Find the unit impulse response of this circuit.

(b) Find the transfer function 𝐻(𝜔), and sketch 𝐻(𝜔) .

(c) Sketch the output of this circuit for an input 𝑓[𝑛] which is the sampled 

version of 𝑓(𝑡), where 𝑓(𝑡), is ¼ cycle of a sinewave. The sampling 

period is 𝑇.

Problem 5



(a) Find the unit impulse response of this circuit.

Solution

The impulse response is the output of the system when the input is the 

Dirac function. Therefore,

ℎ 𝑡 = න
0

𝑡

𝛿 𝜏 − 𝛿 𝜏 − 𝑇 𝑑𝜏 = 𝑢 𝑡 − 𝑢 𝑡 − 𝑇 = rect
𝑡 −

𝑇
2

𝑇

Problem 5 (a)

𝑓 𝑡 − 𝑓(𝑡 − 𝑇)



(b) Find the transfer function 𝐻(𝜔), and sketch 𝐻(𝜔) .

Solution

𝐻 𝜔 = ℱ ℎ 𝑡 = ℱ rect
𝑡 −

𝑇
2

𝑇
= 𝑇sinc

𝜔𝑇

2
𝑒−𝑗𝜔𝑇/2

𝐻 𝜔 = 𝑇 sinc
𝜔𝑇

2

Problem 5 (b)

𝑓 𝑡 − 𝑓(𝑡 − 𝑇)



Problem 5 (b)

(c) Sketch the output of this circuit for an input 𝑓[𝑛] which is the sampled 

version of 𝑓(𝑡) which is ¼ cycle of a sinewave. The sampling period is 𝑇.

Solution

The impulse response is a rectangular pulse of width 𝑇. When a sampled 

signal is applied to this, the samples are convolved with this pulse. The 

result is the piecewise linear function (staircase function) shown below.



• As already mentioned, in order to reconstruct the original signal 𝑥(𝑡) in 

theory, we can use an ideal lowpass filter on the sampled spectrum.

• In practice, there are various circuits/devices which facilitate 

reconstruction of the original signal from its sampled version.

• Consider a continuous-time, band-limited signal 𝑥 𝑡 , limited to 

bandwidth 𝜔 ≤ 2𝜋 × 𝐵 rad/sec. We sample 𝑥 𝑡 uniformly with 

sampling frequency 𝑓𝑠 = 1/𝑇𝑠 to obtain the discrete-time signal 𝑥[𝑛].

• A possible technique to reconstruct the continuous-time signal from its 

samples is the so called sample and hold circuit. This is an analogue 

device which samples the value of a continuously varying analogue 

signal and outputs the following signal 𝑥𝐷𝐴 𝑡 .

𝑥𝐷𝐴 𝑡 =

𝑥[𝑛] 𝑛𝑇𝑠 −
𝑇𝑠

2
< 𝑡 < 𝑛𝑇𝑠 +

𝑇𝑠

2

𝑥 𝑛 /2 𝑡 = 𝑛𝑇𝑠 ±
𝑇𝑠

2

0 otherwise

Problem 6: Reconstruction of the continuous time using the

sample and hold operation



• The figure below facilitates the understanding of sample and hold

operation.

• The grey continuous curve depicts the continuous signal 𝑥 𝑡 .

• The red arrows depict the locations of the discrete (sampled) signal 𝑥 𝑛 .

• The green continuous curve depicts the signal 𝑥𝐷𝐴 𝑡 .

Problem 6: Reconstruction of the continuous time using the

sample and hold operation cont.



• In the sample and hold operation the signal is written as:

𝑥𝐷𝐴 𝑡 = ෍

𝑛=−∞

∞

𝑥(𝑛𝑇𝑠)Π
𝑡 − 𝑛𝑇𝑠
𝑇𝑠

with Π 𝑡 the well known unit gate or rectangle function:

Π 𝑡 = rect 𝑡 = ቐ
1 𝑡 < 0.5
0.5 𝑡 = 0.5
0 otherwise

• Note that the values at 𝑡 = ±0.5 do not have any impact in the Fourier 

Transform of Π 𝑡 and alternative definitions of Π 𝑡 have rect ±0.5 to 

be 0, 1 or undefined.

Problem 6: Reconstruction of the continuous time using the

sample and hold operation cont.



• Consider that the continuous-time, band-limited signal 𝑥 𝑡 , is limited to 

bandwidth 𝜔 ≤ 2𝜋 × 103rad/sec.

• We sample 𝑥 𝑡 uniformly with sampling frequency 𝑓𝑠 = 1/𝑇𝑠 = 5 ×
103𝐻𝑧 to obtain the discrete-time signal 𝑥 𝑛 = 𝑥(𝑛𝑇𝑠).

We see that 𝑇𝑠 = 0.2 × 10−3.

• Taking into consideration that:

𝑥𝐷𝐴 𝑡 = ෍

𝑛=−∞

∞

𝑥(𝑛𝑇𝑠)Π
𝑡 −

𝑛
𝑓𝑠

0.2 × 10−3

• It is straightforward to show that:

𝑥𝐷𝐴 𝑡 = ෍

𝑛=−∞

∞

𝑥(𝑛𝑇𝑠) 𝛿(𝑡 − 𝑛𝑇𝑠) ∗ Π
𝑡

0.2 × 10−3

𝑥𝐷𝐴 𝑡 = ( ෍

𝑛=−∞

∞

𝑥(𝑛𝑇𝑠)𝛿(𝑡 − 𝑛𝑇𝑠) ) ∗ Π
𝑡

0.2 × 10−3

Problem 6: Reconstruction of the continuous time using the

sample and hold operation cont.



𝑥𝐷𝐴 𝑡 = σ𝑛=−∞
∞ 𝑥(𝑛𝑇𝑠)𝛿(𝑡 − 𝑛𝑇𝑠) ∗ Π

𝑡

𝑇𝑠

▪ The Fourier transform of the function σ𝑛=−∞
∞ 𝑥(𝑛𝑇𝑠)𝛿(𝑡 − 𝑛𝑇𝑠) is 

1

𝑇𝑠
σ𝑘=−∞
∞ 𝑋(𝜔 + 𝑘

2𝜋

𝑇𝑠
).

▪ The Fourier transform of the function Π
𝑡

𝑇𝑠
can be easily found using 

the definition of the Fourier transform.

▪ The Fourier transform of 𝑥𝐷𝐴 𝑡 is the product of the two Fourier 

transforms described above (remember that convolution in time 

becomes multiplication in frequency).

Problem 6: Reconstruction of the continuous time using the

sample and hold operation cont.



𝑥𝐷𝐴 𝑡 = σ𝑛=−∞
∞ 𝑥(𝑛𝑇𝑠)𝛿(𝑡 − 𝑛𝑇𝑠) ∗ Π

𝑡

𝑇𝑠

▪ We can show that

𝑋𝐷𝐴 𝜔 =
1

𝑇𝑠
෍

𝑘=−∞

∞

𝑋(𝜔 + 𝑘
2𝜋

𝑇𝑠
) ∙ 𝑇𝑠sinc

𝜔𝑇𝑠
2

= σ𝑘=−∞
∞ 𝑋(𝜔 + 𝑘

2𝜋

𝑇𝑠
) ∙ sinc

𝜔𝑇𝑠

2

▪ In order to recover the original spectrum 𝑋(𝜔) we must remove the 

replications 𝑋(𝜔 + 𝑘
2𝜋

𝑇𝑠
) by passing 𝑋𝐷𝐴 𝜔 through a lowpass filter.

▪ Note that the term sinc
𝜔𝑇𝑠

2
must also be removed from 𝑋𝐷𝐴 𝜔 .

Problem 6: Reconstruction of the continuous time using the

sample and hold operation cont.



• We now wish to pass 𝑋𝐷𝐴 𝜔 through a system 𝐻(𝜔) and get 𝑋(𝜔) at 

the output.

• We are looking for a function 𝐻(𝜔) that satisfies the relation

𝑋 𝜔 = 𝐻(𝜔)𝑋𝐷𝐴 𝜔

• In order to remove the replications 𝑋 𝜔 + 𝑘
2𝜋

𝑇𝑠
, 𝑘 ≠ 0, 𝐻(𝜔) must be 

zero for 𝜔 > 2𝜋 × 103rad/sec. 

• Recall that:

𝑋𝐷𝐴 𝜔 = σ𝑘=−∞
∞ 𝑋(𝜔 + 𝑘

2𝜋

𝑇𝑠
) ∙ sinc

𝜔𝑇𝑠

2

𝑇𝑠 = 0.2 × 10−3

• Therefore,

𝐻 𝜔 =
Π

𝜔

4𝜋×103

sinc 10−4𝜔

Problem 6: Reconstruction of the continuous time using the

sample and hold operation cont.


