Signals and Systems

Tutorial Sheet 7 – Time and Frequency Response and Filters

DR TANIA STATHAKI

READER (ASSOCIATE PROFESSOR) IN SIGNAL PROCESSING IMPERIAL COLLEGE LONDON

Problem 1 (a)

For an LTI system described by the transfer function

$$H(s) = \frac{s+3}{(s+2)^2}$$

find the system's response (output in time domain) to the input $\cos(2t + 60^\circ)$.

Solution

We proved in lectures that:

 $\cos(\omega_0 t + \theta_0) \Rightarrow |H(j\omega_0)| \cos[\omega_0 t + \theta_0 + \angle H(j\omega_0)], \ \omega_0 = 2, \ \theta_0 = 60^\circ$ $H(j\omega) = \frac{j\omega + 3}{(j\omega + 2)^2}, \ |H(j\omega)| = \frac{\sqrt{\omega^2 + 9}}{\omega^2 + 4} \text{ and } \angle H(j\omega) = \arctan\left(\frac{\omega}{3}\right) - 2\arctan\left(\frac{\omega}{2}\right).$ $|H(j2)| = \frac{\sqrt{2^2 + 9}}{2^2 + 4} = \frac{\sqrt{13}}{8}$ $\angle H(j2) = \arctan\left(\frac{2}{3}\right) - 2\arctan(1) = 33.69006766 - 2 \cdot 45 = -56.3099$ $\cos(2t + 60^\circ) \Rightarrow \frac{\sqrt{13}}{8}\cos[2t + 60^\circ - 56.3099^\circ] = \frac{\sqrt{13}}{8}\cos[2t + 3.69^\circ]$

Problem 1 (b)

For the previous system find the response to the input $sin(3t - 45^{\circ})$.

Solution

 $\sin(\theta) = \cos(\theta - \frac{\pi}{2})$ and therefore, $\sin(3t - 45^\circ) = \cos\left(3t - 45^\circ - \frac{\pi}{2}\right) =$ $\cos(3t - 135^{\circ}).$ $\cos(\omega_0 t + \theta_0) \Rightarrow |H(j\omega_0)| \cos[\omega_0 t + \theta_0 + \angle H(j\omega_0)], \omega_0 = 3, \theta_0 = -135^{\circ}$ $|H(j\omega)| = \frac{\sqrt{\omega^2 + 9}}{\omega^2 + 4}$ and $\angle H(j\omega) = \arctan\left(\frac{\omega}{2}\right) - 2\arctan\left(\frac{\omega}{2}\right)$. $|H(j3)| = \frac{\sqrt{3^2 + 9}}{3^2 + 4} = \frac{\sqrt{18}}{13}$ $\angle H(j3) = \arctan\left(\frac{3}{3}\right) - 2\arctan\left(\frac{3}{2}\right) = 45 - 2 \cdot 56.30993247^{\circ}$ $= -67.6198648^{\circ}$ $\cos(3t - 135^\circ) = \sin(3t - 45^\circ) \Rightarrow \frac{\sqrt{18}}{12} \cos[3t - 135^\circ - 67.6198648^\circ] =$ $\frac{\sqrt{18}}{13}\cos[3t - 45^\circ - 67.6198648^\circ - 90^\circ] = \frac{\sqrt{18}}{13}\sin[3t - 112.6198^\circ]$

Problem 1 (c)

For the previous system find the system's response to the input e^{j3t} .

Solution

 $e^{j3t} = \cos(3t) + j\sin(3t)$ with $\sin(3t) = \cos\left(3t - \frac{\pi}{2}\right) = \cos(3t - 90^\circ)$. $\cos(\omega_0 t + \theta_0) \Rightarrow |H(j\omega_0)| \cos[\omega_0 t + \theta_0 + \angle H(j\omega_0)]$ $|H(j3)| = \frac{\sqrt{3^2 + 9}}{3^2 \pm 4} = \frac{\sqrt{18}}{12}$ $\angle H(j3) = -67.6198648^{\circ}$ $\cos(3t) \Rightarrow \frac{\sqrt{18}}{13} \cos[3t - 67.6198648^{\circ}]$ $\cos(3t - 90^\circ) \Rightarrow \frac{\sqrt{18}}{12} \cos[3t - 67.6198648^\circ - 90^\circ] = \frac{\sqrt{18}}{13} \sin[3t - 67.6198648^\circ]$ $e^{j3t} = \cos(3t) + j\sin(3t) \Rightarrow \frac{\sqrt{18}}{12}\cos[3t - 67.6198648^\circ] + j\frac{\sqrt{18}}{12}\sin[3t - 67.61986648^\circ] + j$ $67.6198648^{\circ}] = \frac{\sqrt{18}}{12} e^{j(3t-67.6198648^{\circ})t} = e^{j3t} |H(j3)| e^{j \angle H(j3)} = e^{j3t} H(j3)$ (this result could be used directly, since it has also been proven in lectures)

Problem 2

Draw a rough sketch of the amplitude and phase response of the LTI systems whose pole-zero plots are shown in Figures (a) and (b) below.

Problem 2 (a)

We have a zero at -1 and a pole at -2. Therefore, $H(s) = \frac{s+1}{s+2}$ $H(j\omega) = \frac{j\omega+1}{j\omega+2}$. The amplitude is $|H(j\omega)| = \frac{\sqrt{\omega^2+1}}{\sqrt{\omega^2+4}}$ with $|H(j\omega)|^2 = \frac{\omega^2+1}{\omega^2+4}$. $\frac{d}{d\omega} |H(j\omega)|^2 = \frac{2\omega(\omega^2+4)-2\omega(\omega^2+1)}{(\omega^2+4)^2} = \frac{6\omega}{(\omega^2+4)^2} > 0$ for $\omega > 0$. Therefore, $|H(j\omega)|^2$ is an increasing function for $\omega > 0$. |H(j0)| = 1/2 and $|H(\infty)| = 1$.

Problem 2 (a) cont.

 $H(j\omega) = \frac{j\omega+1}{j\omega+2} \text{ and the phase is } \angle H(j\omega) = \arctan(\omega) - \arctan(\frac{\omega}{2}).$ We see that $\angle H(j0) = 0$ and $\lim_{\omega \to \infty} (\angle H(j\omega)) = 0.$ $\frac{d}{d\omega} \angle H(j\omega) = \frac{1}{1+\omega^2} - \frac{1}{2} \frac{1}{1+\frac{\omega^2}{4}} = \frac{2+\frac{\omega^2}{2} - (1+\omega^2)}{2(1+\omega^2)\left(1+\frac{\omega^2}{4}\right)} = \frac{1-\frac{\omega^2}{2}}{2(1+\omega^2)\left(1+\frac{\omega^2}{4}\right)}$ For $\frac{\omega^2}{2} < 1 \Rightarrow \omega^2 < 2 \Rightarrow \omega < \sqrt{2} = 1.414$ the phase is increasing. For $\frac{\omega^2}{2} > 1 \Rightarrow \omega > \sqrt{2} = 1.414$ the phase is decreasing.

Problem 2 (b)

We have a zero at -2 and a pole at -1. Therefore, $H(s) = \frac{s+2}{s+1}$.

$$H(j\omega) = \frac{j\omega+2}{j\omega+1}$$
. The amplitude is $|H(j\omega)| = \frac{\sqrt{\omega^2+4}}{\sqrt{\omega^2+1}}$ with $|H(j\omega)|^2 = \frac{\omega^2+4}{\omega^2+1}$.
$$\frac{d}{d\omega} |H(j\omega)|^2 = \frac{2\omega(\omega^2+1)-2\omega(\omega^2+4)}{(\omega^2+1)^2} < 0$$
. Therefore, $|H(j\omega)|^2$ is an decreasing function

function.

Problem 2 (b) cont.

 $H(j\omega) = \frac{j\omega+2}{j\omega+1} \text{ and the phase is } \angle H(j\omega) = \arctan(\omega/2) - \arctan(\omega).$ We see that $\angle H(j0) = 0$ and $\angle H(j\omega) = 0.$ $\frac{d}{d\omega} \angle H(j\omega) = -\frac{1}{1+\omega^2} + \frac{1}{2}\frac{1}{1+\frac{\omega^2}{4}} = \frac{-2-\frac{\omega^2}{2}+(1+\omega^2)}{2(1+\omega^2)\left(1+\frac{\omega^2}{4}\right)} = \frac{\frac{\omega^2}{2}-1}{2(1+\omega^2)\left(1+\frac{\omega^2}{4}\right)}$ For $\frac{\omega^2}{2} < 1 \Rightarrow \omega^2 < 2 \Rightarrow \omega < \sqrt{2} = 1.414$ the phase is decreasing. For $\frac{\omega^2}{2} > 1 \Rightarrow \omega > \sqrt{2} = 1.414$ the phase is increasing.

Problem 3: Design of Butterworth filters with Sallen-Key

- The transfer function of the Sallen-Key filter on the right is: $H(s) = \frac{1}{1 + C_2(R_1 + R_2)s + C_1C_2R_1R_2s^2}$
- Assuming that $\omega_c = 1$ and n even we choose:
 - $C_1 C_2 R_1 R_2 = 1$
 - $C_2(R_1 + R_2) = -2\cos(\frac{2k+n-1}{2n}\pi)$
- This guarantees that H(s) has two poles at $\cos(\frac{2k+n-1}{2n}\pi) \pm j \sin(\frac{2k+n-1}{2n}\pi)$.
- Cascade n/2 such filters.
- When n is odd the remaining real pole can be implemented with an RC circuit.

Problem 3: Design of Butterworth filters with Sallen-Key cont.

One RC circuit

One Sallen-Key with k = 1and n = 2 One Sallenkey with k = 1, n = 3 followed by one RC circuit A cascade of two Sallenkeys with n = 4and k = 1, 2.

Problem 3: Design of Butterworth filters with Sallen-Key cont.

- So far we have considered only normalized Butterworth filters with 3dB bandwidth and $\omega_c = 1$.
- We can design filters for any other cut-off frequency by substituting s by s/ω_c .
- For example, the transfer function for a second-order Butterworth filter for $\omega_c = 100$ is given by:

$$H(s) = \frac{1}{(\frac{s}{100})^2 + \sqrt{2}\left(\frac{s}{100}\right) + 1} = \frac{1}{s^2 + 100\sqrt{2}s + 10^4}$$