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Problem 11}

Find the convolution:
(i)  y(t) = u(t) *u(t), u(t) is the unit step function
We will use the definition:

y(t) = joou(r)u(t —17)dT

METHOD

In all questions we will find the range of values of t for which both
functions inside the integral are non zero. Remember that one of the
functions is reversed and shifted.

u(t) #0ift =0 (1)
ut—1)#0ift—1t=20=>1<t (2)

Therefore, from (1) and (2) we form the condition 0 < 7 < t. This
condition makes sense if t > 0.

y(t) = f_oooou(r)u(t —1)dt = fotu(r)u(t —7)dt = fot dr=t, t>0.
Hence, y(t) = tu(t) (easy to plot).
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Problem 1)

Find the convolution:
(i) y(t) = e %u(t) * e Ptu(t)

y(t) = f e u(t)e PEDy(t — 1)dt

u(t) #0ift =0 (1)
ut—1)#0ift—1t=20=>1<t (2)

Therefore, from (1) and (2) we form the condition 0 < 7 < t. This
condition makes sense if t > 0.

y(t) = ffooo e~y (0)e POy (t — 1)dr = fot e~ u(t)e PEDy(t — 1)dt

_ (t ,—at,-b(t-1) _ ,—bt (t _—at bt _ —bt (t _—(a-b)T
= J, e %e dt =e " [[e e’ dr=e"" ['e dt

—bt —-bt
= _;_b) e—(a—b)r|; — —?a—b) (e=(@D)X _ 1) = —(al—b) (e7at — &bt ¢ > 0
Hence,
e—at_e—bt
y(t) = u(t)

b—a
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Prohlem 1 (i)

Find the convolution:
(i) y(t) = tu(t) * u(t)

y(t) = f tu(t)u(t — v)dr

u(t) #0ift =0 (1)
ut—1t)#0ift—1t=20=>1<t (2)

Therefore, from (1) and (2) we form the condition 0 < 7 < t. This
condition makes sense if t > 0.

y(t) = ffooo tu(Du(t — 1)dt = fot tu(du(t — 7)dt
.

t T
= Jytdr ==

tZ

—t=0
0 2

Hence,
2

y(®) =~ u(t)
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Prohlem 2 (i)

Find the convolution:

() y() = Gin(Ou(®) * u(®)
y(t) = f sin(t)u(t)u(t — t)drt

u(t) #0ift =0 (1)
ut—1t)#0ift—1t=20=>1<t (2)

Therefore, from (1) and (2) we form the condition 0 < 7 < t. This
condition makes sense if t > 0.

oo

y(@) = J__ sin(@u(t)u(t — 1)dt = fot sin(t)u(t)u(t — t)dr

= fot sin(7)dt = —cos(7)|§ = —(cos(t) — cos(0)) = 1 —cos(t),t =0
Hence,

y(t) = (1 = cos(t))u(t)
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Prohiem 2 (ii)

Find the convolution:

(i) (&) = (cos(Oyu(t)) * u(t)
y(t) = f cos(D)u(t)u(t — t)dr

u(t) #0ift =0 (1)
ut—1t)#0ift—1t=20=>1<t (2)

Therefore, from (1) and (2) we form the condition 0 < 7 < t. This
condition makes sense if t > 0.

oo

y() = J__ cos(Du()u(t — 1)dt = fot cos(Du(t)u(t — 7)dt

= fot cos(1)dt = sin(7)|§ = sin(t) — sin(0) = sin(t), t = 0
Hence,
y(t) = sin(t)u(t)
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(a) The unit impulse response of an LTI system is h(t) = e~ fu(t). Find this
system’s zero-state response y(t) if the inputis f(t) = u(t).

y(t) = e~ u(t) * u(t)
y(t) = f e "u(t)u(t — )dr

u(t) #0ift =0 (1)
ut—1t)#0ift—1t=20=>1<t (2)

Therefore, from (1) and (2) we form the condition 0 < 7 < t. This
condition makes sense if t > 0.

y(t) = ffooo e "u(r)u(t — t)dt = fot e "u(r)u(t — v)dt
— [fetdr=—e 5= —(et—1) =1—e 5, t > 0
Hence,

y(©) =1 —e u(t)
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(b) The unit impulse response of an LTI system is h(t) = e~ fu(t). Find this
system’s zero-state response y(t) if the input is f(t) = e 2tu(t).

y(t) = e~ tu(t) * e 2tu(t)
For this question we can refer to Question 1(ii) with a = 1,b = 2.
We see immediately that:
y(t) = (e7*—e7*Hu(?)
The convolution is shown at the bottom figure with maximum of 0.25 at

0.693 = In(2).

—0:5
(0.693.0.25)

S~

0 2 4 5

—-0:5
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(c) The unit impulse response of an LTI system is h(t) = e~ tu(t). Use
Integration Tables to find this system’s zero-state response y(t) if the
input is f(t) = sin(3t)u(t).

y(t) = e~ tu(t) * sin(3t)u(t)

y(t) = f sin(37) u(t)e " Du(t — 1)dr

u(t) #0ift =0 (1)
ut—1)#0ift—1t=20=>1<t (2)

Therefore, from (1) and (2) we form the condition 0 < 7 < t. This
condition makes sense if t > 0.

(0.0]

y(®) = [__sin(37) u(r)e" " Du(t — 1)dr = fot sin(31)e~(t"Ddr
t

= e‘tf sin(37)e’dt
0

The solution continues on the next slide. To find the expression for the
integral you can use the site
https://en.wikipedia.org/wiki/List_of_integrals_of_exponential_functions
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From Tables of integrals involving exponential and trigonometric functions (see
link at the end of previous slide) we have:

at at
j sin(b1)e%dt = T} (asin(bt) — bcos(b1)) = msin(br — )

a

va?+b2

where cos(¢) =
1

For a = 1,b = 3 we have cos(¢) = —— = ¢ = cos™* (=) = 71.565°

) V10 V10
Therefore, [ sin(37)e’dr = %sin@r — 71.5659).
_ ,—t (b T _ —trel _ oy _ 1 i 0
y(t) =e fo sin(31)etdt = e (msm(Bt 71.565°) msm( 71.565°))

— 1 _ 0y 4 &L 0
—m51n(3t 71.565 )+m51n(71.565 )

_ 1 . oy 4 0:9486e7t 1 _ o, T\ , 0.9486e~"
= ——sin(3t — 71.565%) + “1 = = mcos(Bt 71.565 +2)+ =
0.9486e " 1 0.9486e~ ¢t

1

mcos(3t — 71.565° + 90°) + =

V10 V10

cos(3t + 18.435°) +

V10
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Problem4

By applying the shift property of convolution, find the system’s response y(t)
(i.e. zero-state response) given that h(t) = e~tu(t) and that the input f(t) is
as shown in figure below.

Solution
We observe that the inputis f(t) = u(t) —u(t — 1).

y(©) = e tu(t) * (u(®) —u(t — 1)) = e~ tu(t) *u(t) — e~ tult) *u(t — 1)

In Problem 3(a) we proved that e “tu(t) * u(t) = (1 — e Hu(t).

Therefore, from the shift property of convolution (See Slide 15 Lecture 4)
e tu(®) xu(t—1) = (1 —e ED)yy(t - 1).

y(t) =e tu@) * (u@) —ut—1)) =1 —eHu®) - (1 —e EDu(t - 1.
(1)

1
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Problem 4 cont.

y(©) = e tu(t) * (u@®) —ult—1)) =1 —eHu@) - (1 —e EDu(t —1).

The function (1 — e H)u(t) is the positive blue curve shown in figure
below.

The function —(1 — e~y (t — 1) is the negative blue curve shown in
figure below.

The required function y(t) is the purple and green curve shown in figures
below.
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A first-order allpass filter impulse response is given by
h(t) = —6(t) + 2etu(t)
(a) Find the zero-state response of this filter for the input etu(—t).
y(t) = (=6(t) + 2etu(t)) * etu(—t) = —=6(t) * etu(—t) + 2e~tu(t) *
etu(—t) = —etu(—t) + 2e " tu(t) * etu(-t)
Let’s focus on 2e~tu(t) * etu(—t)

2e"tu(t) x etu(—t) = j eTu(—1)2e~ Dyt — 1)dr

— 00

u(—7)#0if—71>20=>71<0 (1)
u(t—1t)#0ift—1t=>20=>1t<t (2)
For t = 0 the intersection of conditions (1) and (2) is
T<0)NET<)=(r<0)

0 0
2e"tu(t) x etu(—t) = j e"u(—1)2e"CDy(t — 1)dt = j eT2e~ (=T

0
0
= e‘tf 2e%Tdr = e~ te??| =et
—0o0

— 00
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For t < 0 the intersection of conditions (1) and (2) is
T<0O)NE@E<t) =<t
t t
2e"tu(t) x etu(—t) = J e"u(—1)2e" Dy (t — 1)dtr = J eT2e~(t=Ddr

— 00

- €

— 00

t t
— e_tj 2e%tdr = e~ te?"
Therefore,
t
Doty (s E(—t :{e t<0
e u( ) * e U( ) e_t t>0
—5(t) * efu(—t) = —e'u(—t)
L —t t _ | —etu(=t)+e* t<0
—6(t) * eu(—t) + 2e *u(t) x e'u(-t) = —etu(—t)+e t t=>0
_ { _et+et: 0 t < 0
O+et=et t20
Hence, y(t) = e~ tu(t).
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A first-order allpass filter impulse response is given by
h(t) = —6(t) + 2etu(t)
(b) Sketch the input and the corresponding zero-state response.
« The input etu(—t) is the red curve shown in figure below left.
« The zero-state response y(t) = e~tu(t) is the blue curve shown in
figure below right.
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(a) Find and sketch the convo

lution:

YO =) =0 = fi@fe(t —1)dr

f, (1)

0 2 3

[ ==

f1(t) = Au(t — 2) — Au(t — 3)

_ﬁu)=Bue¢—2)—Bu(

5
—t—==

)

| £ (1)

-5/2 -2
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(a) Find and sketch the convolution:
y(£) = f1(O) * () = [* i(Dfp(t — D)d7
£i(t) = Au(t —2) — Au(t —3) and f,(t) = Bu(~t — 2) — Bu (—t - g)

f1(t)={g 2=t=3 5ng fz(t)z{B —25<5t< -2

elsewhere 0 elsewhere
i) #0=>2<71t<3 (1D
Lt—1)#0=>-25<t—-1<-2=22<1t—-t<25
>t+2<71t<t+25 (2)
* Condition (1) forms Interval 1 shown in blue line below with fixed bounds
2 and 3.

* Condition (2) forms Interval 2 shown in red line below with moving
bounds t + 2 and ¢t + 2. 5. Interval 2 is narrower than Interval 1.
* The green line below represents the variable of integration z.

2 3
|

t+2 t+2.5
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Scenario I:

* Interval 2 overlaps with Interval 1 from the left.

* This means that the upper bound of Interval 2 lies within Interval 1 and the
lower bound of Interval 2 is outside Interval 1.
o The above impliesthatt+25>2=>t>-05andt+2<2=t<0and

therefore, by combining the above conditions we obtain —0.5 <t < 0.

» The overlapping area is from 2 to t + 2.5. It is highlighted with a circle in the
figure below.

» The overlapping of the two intervals specifies the two bounds of the
convolution integral for Scenario I.

L) £O = [, i@fE—1dr = AB [T dr = AB(t +0.5),
—-05<t<0 | | Note that the amplitude AB = 1

in the figure left.

2 3

' A
t+2 t+2.5
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Scenario Il

* Interval 2 lies within Interval 1.

» This means that both the upper and lower bounds of Interval 2 lie within
Interval 1.
The above impliesthatt+2>2=>t>0andt+25<3 =1t <0.5, and
therefore, by combining the above conditions we obtain 0 <t < 0.5

» The overlapping area is fromt + 2 to t + 2.5. It is highlighted with an oval in
the figure below.

» The overlapping of the two intervals specifies the two bounds of the

convolution integral for Scenario Il.

f© % f(0) = [12° A@f(t =~ Ddr = [ ABdr="2,0<t<05

(shown left with AB = 1)

—0:5

0 05 t+2 t+2.5
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Scenario lll:

* Interval 2 overlaps with Interval 1 from the right.

» This means that the lower bound of Interval 2 lies within Interval 1 and the
upper bound of Interval 2 is outside Interval 1.

 The above impliesthatt +2<3=>t<1landt+25>3=t>0.5and
therefore, by combining the two conditions we obtain 0.5 <t < 1.

* The overlapping area is from t + 2 to 3. It is highlighted with a circle in the
figure below.

« The overlapping of the two intervals specifies the two bounds of the
convolution integral for Scenario lll.

3 3
() = f,(t) = LOf,(t —1)dt = j ABdt = AB(1—-1),05<t<1
t

t+2 +2

(shown left with AB = 1)
2 3
Y
S

t+2 t+2.5
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By combining Scenarios |, Il and Ill above, we obtain the result of
convolution for the entire range of time as depicted in the figure below.
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(b) Find and sketch the convolution:

y©) = * ) = [ fi@f:{t-1dr

f, (1) f> (2)

-2 0 t — -2 0 b

f1(&) = u(t + 2)
L) =ult+2)—u(t-—1)
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(b) Find and sketch the convolution:

y(®) = 1) * () = [° i@ fa(t — Ddr
i) =ult+2) and f,(t)=u(t+2)—u(t—1)

1 t+2=20=>t2>2-2 1 -2<t<1
f(8) _{0 elsewhere and  f,(t) _{0 elsewhere
() #0=>-2<1 (1)
HLEt—T)#0=>-2<t—-T1<1=>-1<71—-t<?2
>t—1<7t<t+2 (2)

* Condition (1) forms Interval 1 shown in blue line below with a fixed lower
bound -2. It has infinite length since its upper bound is +o.

* Condition (2) forms Interval 2 shown in red line below with moving
boundst — 1 and t + 2.

» The green line below represents the variable of integration z.

-2

t-1 t+2
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Scenario |
* Interval 2 overlaps with Interval 1 from the left.
* This means that the upper bound of Interval 2 lies within Interval 1 and the
lower bound of Interval 2 is outside Interval 1.
o The above impliesthatt+2 > -2=>t>—-4andt—-1<-2=t< -1
and therefore, by combining the above conditions we obtain —4 <t < —1.
* The overlapping area is from —2 to t + 2. It is highlighted with a circle.
« The overlapping of the two intervals specifies the two bounds of the
convolution integral for Scenario I.
t+2

fi(8) * fo(t) = f_t;rzﬁ(f)fz(t —ndr=[_"dr=t+4, —4<t<-1.
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Scenario |l
* Interval 2 lies within Interval 1.
« This means that the lower bound of Interval 2 lies within Interval 1.
o The above impliesthatt —1>-2=t > —1.
* The overlapping area is fromt — 1 to t + 2. It is highlighted with an oval.
« The overlapping of the two intervals specifies the two bounds of the
convolution integral for Scenario Il.
t+2

f1() * () = fﬁfﬁ(ﬂfz(t —tdr=[_"dr=3, -1<t.

P
S

t-1 t+2
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By combining Scenarios | and Il above, we obtain the result of convolution
for the entire range of time as depicted in the figure below.




(€)
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Find and sketch the convolution:

YO =) =0 = fi@fe(t —1)dr

f, (1) £, (1)

] 0] ¢ —= 0

i) = —t(u(-t) —u(-t - 1))
fo(t) = u(t)
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(c) Find and sketch the convolution:
y(©) = i) * f(8) = [, i@ f2(t — Ddr
f1(®) = —t(u(-t) —u(-t—1)) and f,(t) =u(t)

(=t —1<t<0 1 t>o0
f(t) = { 0 elsewhere and f,(t) = {0 elsewhere

i) #0=>-1<71t<0 (1)

LE—T)#0=>0<t—-1=>1<t (2

* Condition (1) forms Interval 1 shown in blue line below with fixed bounds
-1 and 0.

* Condition (2) forms Interval 2 shown in red line below with a moving
upper bound ¢. It is of infinite length since its lower bound is —oo.

» The green line below represents the variable of integration z.
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Prohiem 6 (c)

Scenario |
* Interval 2 overlaps with Interval 1 from the left.
« This means that the upper bound of Interval 2 lies within Interval 1.
o The above implies that t = —1 and t < 0 and therefore, by combining the
above conditions we obtain -1 <t < 0.
« The overlapping area is from —1 to t. It is highlighted with a circle.
« The overlapping of the two intervals specifies the two bounds of the

convolution integral for Scenario |.
ot

t
L)) = [ —tdr=—-7| =-S+; -1<t<0.
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Scenario ll:
* Interval 1 lies within Interval 2.
o The above implies that t > 0.

« The overlapping area is from —1 to 0.
« The overlapping of the two intervals specifies the two bounds of the

convolution integral for Scenario Il.
0 20 1
i)« () = —tdr=—7| =5 0<t
By combining Scenarios | and Il above, we obtain the result of convolution

for the entire range of time as depicted in the figure below.

ik

el
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(d) Find and sketch the convolution:

YO =) =0 = fi@fe(t —1)dr

fi (0|1
,/
-2 0 t—

f1@®) = et(u(—t) —u(—t —2))
f2(t) = et (u(t) —u(t — 1))

f, (1)

klr

1
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(d) Find and sketch the convolution:
y(©) = i) * f(8) = [, i@ f2(t — Ddr
i) =et(w(=t) —u(=t—2)) and f,(t) =e™ % () —u(t—1))

et —2<t<0 {e—Zt 0<t<1
t) = = = and t) = ==
fi®) {O elsewhere f2(8) 0 elsewhere

i) #0=>-2<71t<0 (D)

LE—T)#0=20<t—-1<1=>-1<7-t<0=>t—-1<1t<t(2)

* Condition (1) forms Interval 1 shown in blue line below with fixed bounds
-2 and 0.

* Condition (2) forms Interval 2 shown in red line below with moving
boundst — 1 and ¢.

» The green line below represents the variable of integration z.
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Scenario I
* Interval 2 overlaps with Interval 1 from the left.
« This means that the upper bound of Interval 2 lies within Interval 1 and the
lower bound of Interval 2 is outside Interval 1.
o The above impliesthatt > —2andt—1 < -2 =t < —1 and therefore, by
combining the above conditions we obtain -2 <t < —1.
« The overlapping area is from —2 to t. It is highlighted with a circle in the
figure below.
« The overlapping of the two intervals specifies the two bounds of the
convolution integral for Scenario I.
@ f(0) = [2,efe 2 Ndr = e [ e3Tdr = e 72 2 (6% — ™)
1

= g(et —e %%, —2<t<—1

(shown with the green curve right)
-2 0
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Scenario |l
* Interval 2 lies within Interval 1.
o The above impliesthatt —1> -2 >t > —1 and t < 0 and therefore, by
combining the above conditions we obtain —1 <t < 0.
« The overlapping area is from t — 1 to t. It is highlighted with an oval in the

figure below.
« The overlapping of the two intervals specifies the two bounds of the
convolution integral for Scenario Il.
t

() * f(t) = ftt—1 eTe—2t-0dr = p—2t  edr = e—2t§(83t _ o(3t-3))
= §(et —ef™),-1<t<0
(shown with the red curve right)
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Scenario lll:
* Interval 2 overlaps with Interval 1 from the right.
« This means that the lower bound of Interval 2 lies within Interval 1 and the
upper bound of Interval 2 is outside Interval 1.
o The above impliesthatt —1 < 0=t <1 and t = 0 and therefore, by
combining the above conditions we obtain 0 <t < 1.
» The overlapping area is from t — 1 to 0. It is highlighted with a circle in the
figure below.
« The overlapping of the two intervals specifies the two bounds of the
convolution integral for Scenario lll.
i) * f,(t) = fto_l eTe 2(t-Ddr = ¢~2t t0—1 e3Tdr = e‘”%(l — eBt=3)
1

= g(e_Zt —et™3),0<t<1 —0:5

(shown in the purple curve right)

f\
-2 0 [ [
N— :
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By combining Scenarios |, Il and Ill above, we obtain the result of
convolution for the entire range of time as depicted in the figure below.
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Problem ]

Find and sketch c(t) = f(t) * g(t) for the pair of functions shown below.

f(e) g (1)

sin !

f(t) = sin(t) (u(t) —u(t — Zn))
g(t) = u(t) —u(t — 2m)
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Problem7cont.

Find and sketch the convolution:

y(©) = i) * £(8) = [ L@ fo(t — D)d7

f(t) = sin(t) (u(t) —u(t — Zn)) and g(t) = u(t) — u(t — 2m)
£.(6) = {sin(t) 0<t<2m and f,(t) = {1 0<t<2m

0 elsewhere 0 elsewhere
fit)#0=>0<1t<2m @))

LEt—T)#0=20<t—-1<2n=>-2n<7—-t<0=>-2m+t<1<t(2)
* Condition (1) forms Interval 1 shown in blue line below with fixed bounds 0
and 2.

* Condition (2) forms Interval 2 shown in red line below with moving bounds
—2m+tand &

* The green line below represents the variable of integration .

=2+t t
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Problem7cont.

Scenario I:

* Interval 2 overlaps with Interval 1 from the left.

« This means that the upper bound of Interval 2 lies within Interval 1
and the lower bound of Interval 2 is outside Interval 1.

o The above impliesthatt > 0 and —2rn +t < 0 = t < 2w and therefore,
by combining the above conditions we obtain 0 < t < 2m.

« The overlapping area is from 0 to t.

« The overlapping of the two intervals specifies the two bounds of the
convolution integral for Scenario |.

f® * () = f; i@ f( = Ddr = [ sin(z)dr = —cos(t) + 1

A SN DR N

-2m+i t
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Problem7cont.

Scenario |l

* Interval 2 overlaps with Interval 1 from the right.

« This means that the lower bound of Interval 2 lies within Interval 1 and
the upper bound of Interval 2 is outside Interval 1.
o The above impliesthat —2r +t <2m =t <4mandt = 2r and

therefore, by combining the above conditions we obtain2r < t < 4.

« The overlapping area is from—2m + t to 2.

« The overlapping of the two intervals specifies the two bounds of the
convolution integral for Scenario Il.

O *£0 = [ A@fAE—Ddr = [2T | sin(r)dr

= —cos(7)|?% ., = —cos(2m) + cos(—2m + t) = cos(t) — 1

! T 7 \_V
I | |

=2+t t
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Problem7cont.

By combining Scenarios | and Il above, we obtain the result of convolution
for the entire range of time as depicted in the figure below.

iy




