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Maths for Signals and Systems 
 

Problem Sheet 6 

 

 

Problems 

 

1. Consider a matrix A  with eigenvalues 11   and 12   and eigenvectors  Tx  sincos1   

and  Tx  cossin2  . Show that 
TAA  , IA 2

, 1)det( A , AA 1
. 

 

Solution 

 

The eigenvectors of this matrix are perpendicular to each other, since: 
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Furthermore, their magnitude is 1, since: 

2,1,1sincos 222
 ixi    

For the above reasons, we conclude that the eigenvectors of matrix A  are orthogonal and 

therefore, A  is a symmetric matrix and 
TAA  . 

Moreover, A  can be diagonalised as 
TQQA   with Q  a matrix which contains the 

eigenvectors of A  in its columns, i.e.,  21 xxQ  . 
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, so that 

IQQQIQQQA TTT  22
. 

11)1()det( 21  A . 

Finally from IA 2
 we see that AA 1

. 

 

 

2. Consider a matrix A  with 03 A . Find the eigenvalues of A . Give an example of a matrix of 

any size that satisfies 03 A , with 0A . In case that a matrix A  satisfies 03 A  and is also 

symmetric, prove that 0A . 

 

Solution 

 

The eigenvalues of 
3A  are 

3
i , where i  are the eigenvalues of A . This can be seen from the 

fact that if i  is an eigenvalue of A  with corresponding eigenvector ix  then 

iiiiiiiiiii xxAAAxxAAxAxA 3223   . But 033  iii xxA   and therefore, 

000 33  iiii x  . An example of a matrix which is non-zero but has zero eigenvalues 

is 









00

10
A  with nAn   ,0 . In case where A  is symmetric, the diagonalisation of A  is 

TQQA   with Q  an orthogonal matrix that contains the eigenvectors of A . 

00  TT QQQQA . 

 

 



2 
 

3. Show that the eigenvalues of a symmetric matrix A  with real entries are real. 

 

Solution 

 

Suppose that   is an eigenvalue of A  that corresponds to the eigenvector x . In that case we 

have the following: 

  xxAxAxxAx  )()(   

  xAx  since A  is real. 

In the above we transpose both sides and we get: 
TTTT xAxxAx )()()()(     

Now we multiply both sides from the right with x : 

xxAxxxxxAxxxxAx TTTTTTT )()()()()()(    , since A  is symmetric. 

   xxxxxxxx TTTT )()()()( . Therefore,   is real. 

 

 

4. (i) A skew-symmetric (or antisymmetric) matrix B  has the property BBT  . Show that the 

eigenvalues of a skew-symmetric matrix B  with real entries are purely imaginary. 

(ii) Show that the diagonal elements of a skew-symmetric matrix are 0. 

 

Solution 

 

(i)   xxBxBxxBx  )()(   

  xBx  since B  is real. 

In the above we transpose both sides and we get: 
TTTT xBxxBx )()()()(     

Now we multiply both sides from the right with x : 

xxBxxxxxBxxxxBx TTTTTTT )()()()()()(    , since B  is skew-

symmetric. 
   xxxxxxxx TTTT )()()()( . Therefore,   is purely 

imaginary. The only real eigenvalue that a skew-symmetric matrix might have is the zero 

eigenvalue. 

(ii) We know that BBT   and therefore if ijb  is a random element of B  then jiij bb  . 

Therefore, for the diagonal elements we have iiii bb   and this gives 0iib . 

 

 

5. Consider the skew-symmetric matrix 
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M . 

(i) Show that vMv  , with v  any 4-dimensional column vector. What observation can you 

make out of this result? 

(ii) Using the trace of M , the result of 5(i) and furthermore, the result of Problem 4 above, find 

all four eigenvalues of M . 
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Solution 
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If we take an eigenvalue   of matrix M which correspond to the eigenvector v , we have 

that vMvvMv   . Based on the result vMv   we have 

1  vvv . Therefore, the eigenvalues of the given matrix have magnitude 

1. 

(ii) In Problem 4 we proved that the eigenvalues of a skew-symmetric matrix are purely 

imaginary. For this particular case we also see that they have magnitude of 1. Therefore, for 

matrix M  we can say that the eigenvalues are i  or i  or 0. The matrix has four 

eigenvalues and they sum up to zero. The determinant of M  is not zero (it is actually 

 
19

3

1
4

  ) which means that the matrix is full rank and therefore, it doesn’t have any zero 

eigenvalues. Therefore, two of them are equal to i  and the rest are equal to i . 

 

 

6. Consider matrices A  and B  shown below: 



















001

010

100

A  and 



















111

111

111

3

1
B  

(i) In which of these classes do they belong to? Invertible, orthogonal, projection, permutation, 

diagonalisable, Markov. 

(ii) Which of the factorisations 
11,,,   QQSSQRLU  are possible for A  and B ? 

 

Solution 

 

(i) For A  we have: 

Eigenvalues are -1, 1, 1 and corresponding eigenvectors are  T101 ,  T101  and 

 T010 . The eigenvectors are independent and also orthogonal.  The determinant is -1. 

 A  is invertible (its determinant is non-zero), orthogonal (its rows are orthogonal to each 

other), permutation (obvious), diagonalisable (any invertible matrix is diagonalisable), 

Markov (satisfies the Markov properties – rows/columns have positive elements which sum 

up to 1). It is not a projection matrix because it doesn’t satisfy the property AA 2
. 
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For B  we have: 

Eigenvalues are 1, 0, 0 and corresponding eigenvectors are  T111 ,  T101  and 

 T011 .  The eigenvectors are independent and also orthogonal. The determinant is 0. 

B  is projection ( BB 2
 and is symmetric), diagonalizable (it has a set of independent 

eigenvectors), Markov (satisfies the Markov properties – rows/columns have positive 

elements which sum up to 1). It is not orthogonal or permutation. 

(ii) For a 33  matrix the LU  decomposition looks like: 
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For the given matrix A  we have 011 a  and therefore, at least one of 11l  and 11u  has to be 

zero. In that case either L  or U  is singular. This is not possible since A  is not singular. 

Therefore, A  doesn’t have an LU  decomposition. In order for A  to have an LU  

decomposition, we must reorder the rows of A , i.e., A  must be multiplied from the left 

with a permutation matrix P , and in that case we have LUPA . 

A  has a QR  decomposition as follows: 
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For the given matrix B  we find the LU decomposition using elimination, as follows: 
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is orthogonal, therefore B  does have a QR  decomposition. 

 

Both matrices have 
1SS  decomposition since they have a set of independent 

eigenvectors. 

Both matrices have 
1QQ  decomposition since, due to their symmetry, we can choose a 

set of independent and also orthogonal eigenvectors.  

 

 

 

 

 


