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Maths for Signals and Systems 
 

Problem Sheet 5 

 

 

Problems 

 

1. The Lucas numbers are similar to the Fibonacci numbers but the initial conditions are 11 L  and 

32 L . The relationship kkk LLL   12  holds. Find 100L .  

 

Solution 

 

We define ku  to be the 2-dimensional column vector 











k

k

k
L

L
u

1
.  In that case 
















1

2

1

k

k

k
L

L
u . 

We also create the “fake” equation 11   kk LL . From the two equations: 

kkk LLL   12  

11   kk LL  

we can formulate the matrix form: 
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The eigenvalues of the matrix are obtained from 1010
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This gives us 

  

111111
2

51

2

55
5

2

51

2

51

2

51

2

51
)1(

2

51
3 






















 









 ccccc

 

212
2

51
11 
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We have 
1 SSA  and 

12112   SSSSSSA  and in general 
1 SSA nn

. We see that 

12 Auu  , 1
2
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2. Find the inverse, the eigenvalues and the determinant of A  
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Solution 

 

BIIA  5

1111
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5  where B  is a matrix of size 44  with all its elements equal to 1. 

We observe that A  is the sum of two symmetric matrices. Matrix I5  has eigenvalues  5,5,5,5  

and matrix B  is singular with rank 1. This is quite obvious since its rows are the same. 

Therefore, matrix B  has an eigenvalue 0  repeated 3 times. The 4
th
 eigenvalue of B  is 

obtained from the trace of B  and is equal to 4 .  Matrices I5  and B  are symmetric and 

therefore, we can always find a set of orthonormal eigenvectors for them. If we consider the 

matrix B  its eigenvector that corresponds to 4  is  T1111 . The rest of the eigenvectors 

are given by 

0

0

0

0

0

1111

1111

1111

1111



























































wzyx

w

z

y

x

 

A nice choice for the eigenvector set is the set of the rows of the so called Hadamard matrix. 
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These eigenvectors can also be chosen to be the eigenvectors of the matrix I5 . Since we can 

assume that I5  and B  share the same set of eigenvectors we can assume that the eigenvalues of 

A  are equal to the eigenvalues of I5  minus the eigenvalues of B . Therefore, the eigenvalues of 

A  are 5,5,5,1 . Its eigenvectors are the same as the eigenvectors of I5  and B , i.e., the rows of the 

Hadamard matrix shown above. 

The determinant of A  is 1255551  . 
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3. (i) Carry out the eigenvalue decomposition of the matrices 



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
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(ii) Carry out the eigenvalue decomposition of 
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3B  and 
1A . 

 

Solution 

 

(i) The eigenvalues of 
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with x  a non-zero integer. The eigenvector that correspond to 3  is found from 
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The eigenvalues of 
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4,00403)3)(1( 2    . The eigenvector that correspond to 0  
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with x  a non-zero integer. Therefore 
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In this question we used the fact that the eigenvalues of the inverse of a matrix are the 

inverses of the eigenvalues of the original matrix. 

 

 

4. (i) Suppose that 
1 SSA . What is the eigenvalue matrix of IA 2 ? 
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(ii) What is the eigenvector matrix of IA 2 ? 

(iii) Carry out the eigenvector decomposition of IA 2 . 

 

Solution 

 

(i) The eigenvectors of I2 can be chosen to be the eigenvectors which form the matrix S  in 
1 SSA . Since we can assume that A  and I2  share the same set of eigenvectors we can 

assume that the eigenvalues of IA 2  are equal to the eigenvalues of A  plus the 

eigenvalues of I2 . Therefore, the eigenvalue matrix of IA 2  is I2 .  

(ii) It is obvious from the above analysis that the eigenvector matrix of I2  is S . 

(iii) IAISSSSSISIA 22)2(2 111  
 

 

 

5. Consider the matrix nnnn BIA    where nnB   is a matrix with all its elements equal to 1, of 

size nn . It is given that nnnn cBIA 
 1 . Find c . 

 

Solution 
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We can easily see that nnnn nBB  
2

. 

Therefore, 
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1
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
 

n
ccnccnBBcB nnnnnn . 

 

 

 

 


