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In this set of lectures we will talk about:

* An application of Least Squares method

« Semi-orthogonal matrices

« Rotation, Permutation and Householder Reflection matrices
« Gram-Schmidt Orthogonalisation

QR Decomposition
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Application: Least squares method. Fitting by a line.

Problem:

| am given the three points shown with stars in the figure below. | want to fit them on
the “best” possible straight line.

* The given points are (1,1), (2,2), (3,2).
» The required line is described by an equation of the form b = C + Dt, with C and
D unknowns.

» The three given points must satisfy the line equation:

C+D=1
C+2D =2
C+3D=2

best fit

\ -

~
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Problem:
The previous problem is translated to solving the system
1 1 1
Ax=b=[1 2|[4] = 2].
D
1 3 2

The system is not solvable because b ¢ C(A4) (show that).

Solution:

Solve Ax = p instead, where p is the projection of b onto C(A).
Forarandom bwe write b—p=e=b=p+e.

p is in the column space of A and e is perpendicular to the column space of A.
As already mentioned, projection eliminates e and keeps p.
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As proven, the proposed approach Ax = p yields the same solution which can be
obtained if we look for an x that minimizes the function:

1A% — bl|* = |le]|?
The above function is the square of the magnitude of the error vector.

Apart from Least Squares Minimizations, this method is also called Linear
Regression.

For the particular problem we have:

3 6 5
ATA = l6 14] ATh = [11]
7/3 —1
-1 1/2]'
Or we can solve directly the equations
3C+6D =5

6C + 14D = 11.

We can use the inverse (ATA)™! = [

Final solutionis D = % C = g The “best” line is b = g +%t shown in the previous
figure in red.
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As mentioned, an alternative approach is to find the unknowns that minimize the
error function:

(C+D—1)?+(C+2D—2)?+(C +3D —2)?
We must take the partial derivatives with respect to the two unknowns and set
them to zero.

By implementing the above we get the same solution as previously.

The vector p is obtained by:
7

P1 = C+D—_+__g

=W U

3

=C+ 3D = —
P3 + 6

+1
3
2

UJI NUJI l\J
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_} B 7_ 1
€1 =01 —P1 = 6 6
b _, 5_1
€ = 0 — P2 = 3~ 3
y 1
13
—De—pe =2 — 22— _
€3 3 — P3 6 5
1_.
6
T 7 5 13 1 7 20 13
p =[_ — I S — —_— _|_ _ —_
6 3 6 3 36 36 36
1
6-

p and e are perpendicular to each other as expected.
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The matrix A’ 4

Problem:

We mentioned previously that if a matrix A of dimension m X n has independent
columns ay, a, ..., a,, then AT A is invertible. The proof of this statement is given
below.

Solution:
= | must prove that AT Ax = 0 implies x = 0 where x is a column vector
[x; x, - Xn]T.lassume that ATAx = 0.

= The above implies xTATAx = 0 = (Ax)TAx = 0.
= | define Ax = y and therefore yTy = 0 = ||y||? = 0.
= We know that yTy = ||y||? is the sum of the squares of the elements of a vector.

= Note that for complex vectors ||y||? is defined as y*Ty.

= Therefore, ||y||? = 0 implies that y = 0.

= |nthe above case y = Ax = 0 implies Y7, x;a; = 0. This condition holds only if
x = 0 if A has independent columns.
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The matrix AA”

Problem:

If A has independent rows then AAT is invertible. The proof of this follows in a
similar fashion as in the previous slide.

Solution:

| must prove that AATx = 0 implies x = 0 where x is a column vector. | assume
that AA"x = 0.

= The above implies xT4ATx = 0= (ATx)TATx = 0.

= | define ATx = y and therefore yTy = 0 = ||y||? = 0.

= ||y]|?> = 0 implies that y = 0.

= |nthe above case y = ATx = 0 implies that x = 0 if AT has independent columns
(see previous slide) or, equivalently, if A has independent rows.
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Orthogonal and Orthonormal vectors revision

Lets recall that:
= The column vectors qq, ..., g,, are orthogonal if g;T - qj =0fori=+j.

= |f their lengths are all 1, then the vectors are called orthonormal.
T, _ 0 when i{#j (orthogonalvectors)
@i "4 1 when i=j (unitvectors: ||g;|| =1)

In order for a set of n vectors to satisfy the above, their dimension m must be at
least n, i.e., m = n. This is because the maximum number of m — dimensional
vectors that can be orthogonal is m.
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| assign to a matrix with n orthonormal m —dimensional columns g; the special letter
Q.

| wish to deal first with the case where Q is strictly non-square (it is rectangular), and
therefore, m > n.

The matrix Q is called semi-orthogonal.

Problem:

Consider a semi-orthogonal matrix Q with real entries, of dimension m X n, m > n.
The columns are orthonormal vectors. Prove that QT Q = I,«,,.

Solution:
_Q1T_

T g’

QT =|% [ gz -~ 0] = Iy,
q,7

= \We see that Q7T is an inverse from the left.

= This is because there isn’t a matrix Q' for which QQ’ = I,,,»,,,. This would imply that
we could find m independent vectors of dimension n, with m > n. This is not
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« | again assign to a matrix with m orthonormal n —dimensional rows r; the special
letter Q.

» | wish to deal with the case where Q is strictly non-square (it is rectangular), and
therefore, m < n.

* Obviously the matrix Q is defined now is also semi-orthogonal.

Problem:

Consider a semi-orthogonal matrix Q with real entries, of dimension m X n, m <
n. The columns are orthonormal vectors. Prove that QQ7 = I,,,5..

Solution:

rnT] = Ime'

QQ" =

| Tn ]
= We see now that QT is an inverse from the right.
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In linear algebra, a semi-orthogonal matrix is a non-square matrix with real
entries where: if the number of rows exceeds the number of columns, then the
columns are orthonormal vectors; but if the number of columns exceeds the
number of rows, then the rows are orthonormal vectors.

Equivalently, a rectangular matrix of dimension m X n is semi-orthogonal if
QTQ — Ian1 m > n or QQT = Ime, n > m

The above formula yields the terms left-invertible or right-invertible matrix.

In the above cases, the left or right inverse is the transpose of the matrix. For that
reason, a rectangular orthogonal matrix is called semi-unitary. (To remind you: a
unitary matrix is the one with an inverse being its transpose.)
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Problem 1:

Show that for left-invertible, semi-orthogonal matrices of dimension m xn, m > n
|Qx]|| = [|x]| for every n — dimensional vector x.

Solution:

1Qx11? = (Qx)"(Qx) = x"Q"Qx = x"Ix = x"x = |Qx||* = |lx[|* = [|Qx]| = [Ix||.
Problem 2:

Show that for right-invertible, semi-orthogonal matrices of dimension m X n, m <
n, |QTx|| = ||x]|| for every m — dimensional vector x.

Solution:

1Q"xII? = (@"x)"(Q"x) =x"QQ"x = x"Ix =x"x = |Q"x|I* = [Ix]I* = Q" x|l =

[1x]].
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Problem 1:

Extend the relationship Q7 Q = I,,,.,, for the case when Q is a square matrix of
dimension n X n and has orthogonal columns.

Solution:
QTQ =I,4,, = Q1 = Q. The inverse is the transpose.

Problem 2:
Prove that QQT = I, .,,.

Solution:
Since Q is a full rank matrix we can find Q' such that QQ' = I,,,,. This gives:

Q'QQ" = Q" lyxn @ Iixn Q' =Q" > Q' =0Q"

Therefore, we see that Q7 is the two-sided inverse of Q.
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Examples of elementary orthogonal matrices. Rotation matrices.

« The rotation matrix of size 2 x 2 is defined as:

__[cos@ —sinf T _ A—1_ [ cos@  sinf
Q_lsinH cos@landQ =0= —sinf@ cos6

Problems:

* The columns (and rows) of Q are orthogonal (straightforward to prove).
» The columns (and rows) of Q are vectors of magnitude 1 (also straightforward).

= Explain the effect that the rotation matrix has on vectors j = [(1)] and i = [(1)] when
it multiplies them from the left.
= The matrix causes rotation of the vectors.
J
—sinf i
cos

0 - |
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Examples of elementary orthogonal matrices
Permutation Matrices

* Permutation matrices reorder the rows of identity matrices. Examples are:

0O 1 O 0 1
Q=0 0 1landQ = ] . QT = Q7! in both cases.
1 0 O 10

Problems:
= The columns of Q are orthogonal (straightforward).
= The columns of Q are unit vectors (straightforward).

X
= Explain the effect that the permutation matrices have on a random vector [y]
Z

or [;C]] when they multiply the vector from the left.

= Obviously the matrices cause re-ordering of the elements of these vectors.
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Examples of elementary orthogonal matrices
Householder Reflection Matrices

« Householder reflection matrices are defined as:

Q = I — 2uu’ with u any vector that satisfies the condition u"u = 1 (unit vector).
QF =1" — Quu)T =1 -2uu’ =0Q

070 = 0% = - 2uul)( - 2uu’) =1 — 4uu” + 4uu” uu’ and u’ u =1and
therefore, Q70 = Q% =1 — 4uu” + 4uu” =1

Problems:
= Foru; =[1 o0]Tandu, =[1/4/2 —1/\/§]T find Q; =1 — 2uw;T, i =1,2.

= Explain the effect that matrix Q; has on the vector ly] when it multiplies the
vector from the left.

= Explain the effect that matrix Q, has on the vector [y] when it multiplies the

vector from the left.

1717T

Ivll?

* A generalized definitionis Q =1 — 2 with v any column vector.
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The Gram-Schmidt process

« The goal here is to start with three independent vectors a, b, c and construct three
orthogonal vectors 4, B, C and finally three orthonormal vectors.

q1 = A/llAll, gz = B/IIBIl, g5 = C/I|C||
» We begin by choosing A = a. This first direction is accepted.

» The next direction B must be perpendicular to A. We start with b and subtract its
projection along A. This leaves the part of b which we call vector B (what we
knew before as the error of projection), defined as:

AAT

B=b—"zrb

Subtract
projection
to get B
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The Gram-Schmidt process

Problem:
Show that A and B are orthogonal. Note that A = a.
Solution:

T T T
ATB=ATh—ATSb==ATh -2 b=ATh— ATh = 0

The inner product between A and B is 0 and therefore, A and B are orthogonal.

Problem:
Show that if a and b are independent then B is not zero.
AT
B=b———>b
ATA
Solution:

T
The vector %b IS the projection of vector b onto vector a. In order for B to be

zero the projection of vector b onto vector a must be equal to b itself. This
happens only when a and b are dependent.
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The Gram-Schmidt process

The third direction starts with c. This is not a combination of A and B.
Most likely c is not already perpendicular to A and B .

Therefore, we subtract the projections of ¢ along 4 and B to get C:
AAT BBT
C:C_ATAC_BTBC
In general we subtract from every new vector its projections in the

directions already set.

If we had a fourth vector d, we would subtract three projections onto
A B,CtogetD.

We make the resulting vectors orthonormal.
This is done by dividing the vectors
with their magnitudes.
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The factorization A=0R known as QR decomposition

Assume matrix A whose columns are a, b, c.
Assume matrix Q whose columns are q4, g, q; defined previously.

We are looking for a matrix R such that A = QR. Since Q is an orthogonal matrix
we have that R = QT A.
qi’ ¢.'a qi'b qi'c
R=Q"A=|q,"|[la b cl=|g."a q."b q,"c
qs’ q:'a q3'b gqs'c
We know that from the method that was used to construct q; we have
g;Ta=0, g3Ta=0, g3'b =0 (see Appendix)
and therefore,
¢."'a q'b qi'c
R=|[ 0 a;'b q'c
0 0 g3'c
QR decomposition can facilitate the solution of the system Ax = b, since Ax =

b = QRx = b = Rx = QT b. The later system is easy to solve due to the upper
triangular form of R.

So far you have learnt two types of decompositions: the LU and the QR.
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Any matrix A of dimension m X n with independent columns can be
factored into QR.

The m X n matrix Q has orthonormal columns.
The square matrix R is upper triangular with positive diagonal.
ATA =RTQTQR =R'R

With the use of QR decomposition the least squares solution of the system of
equations Ax = b becomes:
ATAX = ATb > RTRX=R"Q"b > R =0Q"b

The system of equations RX = Q7 b can be easily solved with back-substitution.
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q,Ta = 0. The proof of this is straightforward.

g;Ta = 0. In order to prove this we can prove that CTa = 0.

AAT BBT AAT BBT
Cl=c"T-"T—-c"—=(CTa=c"a-c"~a-c"=—a=
AT A BTB ATA BTB
AAT .
CTa=cTa- cha = 0 since 4 = a.

g3'h = 0. In order to prove this we can prove that CTb = 0.

T T
AA BBT AAT BB
Cl=c"T—c"T——-c"T—=C"b=cTh—cT5=b—cT ==
ATA BTB ATA BTB
7 BBT

BTB

b=

C'h=c'h+cT' (B — b)—cTBB b=>C'h=c"B-c

BBTb __ BBT (B + 24 AAT b) = BBTB + BBT AAT
BTB~ = BTB AT A BTB BTBAT A

Thus, CTh = cTB —

T
b but BTA = 0. Therefore 2= b = B.
B'B

TBB

—b=c"B—c"B=0.
B'B



