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Mathematics for Signals and Systems

In this set of lectures we will talk about:

• An application of Least Squares method

• Semi-orthogonal matrices

• Rotation, Permutation and Householder Reflection matrices

• Gram-Schmidt Orthogonalisation

• QR Decomposition



Problem:

I am given the three points shown with stars in the figure below. I want to fit them on 

the “best” possible straight line.

• The given points are (1,1), (2,2), (3,2).

• The required line is described by an equation of the form 𝑏 = 𝐶 + 𝐷𝑡, with 𝐶 and 

𝐷 unknowns.

• The three given points must satisfy the line equation:

𝐶 + 𝐷 = 1
𝐶 + 2𝐷 = 2
𝐶 + 3𝐷 = 2

Application: Least squares method. Fitting by a line.



Application: Least squares method. Fitting by a line cont.

Problem:

The previous problem is translated to solving the system

𝐴𝑥 = 𝑏 =
1 1
1 2
1 3

𝐶
𝐷

=
1
2
2

.

The system is not solvable because 𝑏 ∉ 𝐶 𝐴 (show that).

Solution:

Solve 𝐴ො𝑥 = 𝑝 instead, where 𝑝 is the projection of 𝑏 onto 𝐶(𝐴).

For a random 𝑏 we write 𝑏 − 𝑝 = 𝑒 ⇒ 𝑏 = 𝑝 + 𝑒.

𝑝 is in the column space of 𝐴 and 𝑒 is perpendicular to the column space of 𝐴.

As already mentioned, projection eliminates 𝑒 and keeps 𝑝.



• As proven, the proposed approach 𝐴ො𝑥 = 𝑝 yields the same solution which can be 

obtained if we look for an ො𝑥 that minimizes the function:

𝐴ො𝑥 − 𝑏 2 = 𝑒 2

• The above function is the square of the magnitude of the error vector.

• Apart from Least Squares Minimizations, this method is also called Linear 

Regression.

• For the particular problem we have:

𝐴𝑇𝐴 =
3 6
6 14

𝐴𝑇𝑏 =
5
11

• We can use the inverse 𝐴𝑇𝐴 −1 =
7/3 −1
−1 1/2

.

• Or we can solve directly the equations

3𝐶 + 6𝐷 = 5

6𝐶 + 14𝐷 = 11.

• Final solution is 𝐷 =
1

2
, 𝐶 =

2

3
. The “best” line is 𝑏 =

2

3
+

1

2
𝑡 shown in the previous 

figure in red.

Solution of the specific example



Solution of the specific example

• As mentioned, an alternative approach is to find the unknowns that minimize the 

error function:

𝐶 + 𝐷 − 1 2 + 𝐶 + 2𝐷 − 2 2 + 𝐶 + 3𝐷 − 2 2

• We must take the partial derivatives with respect to the two unknowns and set 

them to zero.

• By implementing the above we get the same solution as previously.

• The vector 𝑝 is obtained by:

𝑝1 = 𝐶 + 𝐷 =
1

2
+

2

3
=

7

6

𝑝2 = 𝐶 + 2𝐷 =
2

3
+ 1 =

5

3

𝑝3 = 𝐶 + 3𝐷 =
2

3
+
3

2
=
13

6



Solution of the specific example

𝑒1 = 𝑏1 − 𝑝1 = 1 −
7

6
= −

1

6

𝑒2 = 𝑏2 − 𝑝2 = 2 −
5

3
=
1

3

𝑒3 = 𝑏3 − 𝑝3 = 2 −

5
13
6
= −

1

6

𝑝𝑇 ∙ 𝑒 =
7

6

5

3

13

6
∙

−
1

6
1

3

−
1

6

= −
7

36
+
20

36
−
13

36
= 0

𝑝 and 𝑒 are perpendicular to each other as expected.



The matrix 𝑨𝑻𝑨

Problem:

We mentioned previously that if a matrix 𝐴 of dimension 𝑚 × 𝑛 has independent 

columns 𝑎1, 𝑎2, … , 𝑎𝑛 then 𝐴𝑇𝐴 is invertible. The proof of this statement is given 

below.

Solution:

 I must prove that 𝐴𝑇𝐴𝑥 = 𝟎 implies 𝑥 = 𝟎 where 𝑥 is a column vector 
𝑥1 𝑥2 … 𝑥𝑛 𝑇. I assume that 𝐴𝑇𝐴𝑥 = 𝟎.

 The above implies 𝑥𝑇𝐴𝑇𝐴𝑥 = 0 ⇒ 𝐴𝑥 𝑇𝐴𝑥 = 0.

 I define 𝐴𝑥 = 𝑦 and therefore 𝑦𝑇𝑦 = 0 ⇒ 𝑦 2 = 0.

 We know that 𝑦𝑇𝑦 = 𝑦 2 is the sum of the squares of the elements of a vector.

 Note that for complex vectors 𝑦 2 is defined as 𝑦∗
𝑇
𝑦.

 Therefore, 𝑦 2 = 0 implies that 𝑦 = 𝟎.

 In the above case 𝑦 = 𝐴𝑥 = 𝟎 implies σ𝑖=1
𝑛 𝑥𝑖𝑎𝑖 = 𝟎. This condition holds only if 

𝑥 = 𝟎 if 𝐴 has independent columns.



The matrix 𝑨𝑨𝑻

Problem:

If 𝐴 has independent rows then 𝐴𝐴𝑇 is invertible. The proof of this follows in a 

similar fashion as in the previous slide.

Solution:

 I must prove that 𝐴𝐴𝑇𝑥 = 𝟎 implies 𝑥 = 𝟎 where 𝑥 is a column vector. I assume 

that 𝐴𝐴𝑇𝑥 = 𝟎.

 The above implies 𝑥𝑇𝐴𝐴𝑇𝑥 = 0 ⇒ 𝐴𝑇𝑥 𝑇𝐴𝑇𝑥 = 0.

 I define 𝐴𝑇𝑥 = 𝑦 and therefore 𝑦𝑇𝑦 = 0 ⇒ 𝑦 2 = 0.

 𝑦 2 = 0 implies that 𝑦 = 𝟎.

 In the above case 𝑦 = 𝐴𝑇𝑥 = 𝟎 implies that 𝑥 = 𝟎 if 𝐴𝑇 has independent columns 

(see previous slide) or, equivalently, if 𝐴 has independent rows.



Orthogonal and Orthonormal vectors revision

• Lets recall that:

 The column vectors 𝑞1, … , 𝑞𝑛 are orthogonal if 𝑞𝑖
𝑇 ∙ 𝑞𝑗 = 0 for 𝑖 ≠ 𝑗.

 If their lengths are all 1, then the vectors are called orthonormal.

𝑞𝑖
𝑇 ∙ 𝑞𝑗 = ቊ

0 when 𝑖 ≠ 𝑗 (𝐨𝐫𝐭𝐡𝐨𝐠𝐨𝐧𝐚𝐥 vectors)

1 when 𝑖 = 𝑗 (𝐮𝐧𝐢𝐭 vectors: 𝑞𝑖 = 1)

• In order for a set of 𝑛 vectors to satisfy the above, their dimension 𝑚 must be at 

least 𝑛, i.e., 𝑚 ≥ 𝑛. This is because the maximum number of 𝑚 − dimensional 

vectors that can be orthogonal is 𝑚.



Semi-orthogonal matrices with more rows than columns

• I assign to a matrix with 𝑛 orthonormal 𝑚 −dimensional columns 𝑞𝑖 the special letter 

𝑄.

• I wish to deal first with the case where 𝑄 is strictly non-square (it is rectangular), and 

therefore,  𝑚 > 𝑛.

• The matrix 𝑄 is called semi-orthogonal.

Problem:

Consider a semi-orthogonal matrix 𝑄 with real entries, of dimension 𝑚 × 𝑛, 𝑚 > 𝑛. 

The columns are orthonormal vectors. Prove that 𝑄𝑇𝑄 = 𝐼𝑛×𝑛.

Solution:

𝑄𝑇𝑄 =

𝑞1
𝑇

𝑞2
𝑇

⋮
𝑞𝑛

𝑇

𝑞1 𝑞2 … 𝑞𝑛 = 𝐼𝑛×𝑛.

 We see that 𝑄𝑇 is an inverse from the left.

 This is because there isn’t a matrix 𝑄′ for which 𝑄𝑄′ = 𝐼𝑚×𝑚. This would imply that

we could find 𝑚 independent vectors of dimension 𝑛, with 𝑚 > 𝑛. This is not

possible.



Semi-orthogonal matrices with more columns than rows

• I again assign to a matrix with 𝑚 orthonormal 𝑛 −dimensional rows 𝑟𝑖 the special 

letter 𝑄.

• I wish to deal with the case where 𝑄 is strictly non-square (it is rectangular), and 

therefore,  𝑚 < 𝑛.

• Obviously the matrix 𝑄 is defined now is also semi-orthogonal.

Problem:

Consider a semi-orthogonal matrix 𝑄 with real entries, of dimension 𝑚 × 𝑛, 𝑚 <
𝑛. The columns are orthonormal vectors. Prove that 𝑄𝑄𝑇 = 𝐼𝑚×𝑚.

Solution:

𝑄𝑄𝑇 =

𝑟1
𝑟2
⋮
𝑟𝑛

𝑟1
𝑇 𝑟2

𝑇 … 𝑟𝑛
𝑇 = 𝐼𝑚×𝑚.

 We see now that 𝑄𝑇 is an inverse from the right.



Semi-orthogonal matrices: Generalization

• In linear algebra, a semi-orthogonal matrix is a non-square matrix with real 

entries where: if the number of rows exceeds the number of columns, then the 

columns are orthonormal vectors; but if the number of columns exceeds the 

number of rows, then the rows are orthonormal vectors.

• Equivalently, a rectangular matrix of dimension 𝑚 × 𝑛 is semi-orthogonal if 

𝑄𝑇𝑄 = 𝐼𝑛×𝑛, 𝑚 > 𝑛 or 𝑄𝑄𝑇 = 𝐼𝑚×𝑚, 𝑛 > 𝑚

• The above formula yields the terms left-invertible or right-invertible matrix.

• In the above cases, the left or right inverse is the transpose of the matrix. For that

reason, a rectangular orthogonal matrix is called semi-unitary. (To remind you: a

unitary matrix is the one with an inverse being its transpose.)



Semi-orthogonal matrices: Generalization

Problem 1:

Show that for left-invertible, semi-orthogonal matrices of dimension 𝑚 × 𝑛, 𝑚 > 𝑛
𝑄𝑥 = 𝑥 for every 𝑛 − dimensional vector 𝑥.

Solution:

𝑄𝑥 2 = 𝑄𝑥 𝑇 𝑄𝑥 = 𝑥𝑇𝑄𝑇𝑄𝑥 = 𝑥𝑇𝐼𝑥 = 𝑥𝑇𝑥 ⇒ 𝑄𝑥 2 = 𝑥 2 ⇒ 𝑄𝑥 = 𝑥 .

Problem 2:

Show that for right-invertible, semi-orthogonal matrices of dimension 𝑚 × 𝑛, 𝑚 <
𝑛,  𝑄𝑇𝑥 = 𝑥 for every 𝑚 − dimensional vector 𝑥.

Solution:

𝑄𝑇𝑥 2 = 𝑄𝑇𝑥 𝑇 𝑄𝑇𝑥 = 𝑥𝑇𝑄𝑄𝑇𝑥 = 𝑥𝑇𝐼𝑥 = 𝑥𝑇𝑥 ⇒ 𝑄𝑇𝑥 2 = 𝑥 2 ⇒ 𝑄𝑇𝑥 =
𝑥 .



Orthogonal matrices

Problem 1: 

Extend the relationship 𝑄𝑇𝑄 = 𝐼𝑛×𝑛 for the case when 𝑄 is a square matrix of 

dimension 𝑛 × 𝑛 and has orthogonal columns.

Solution:

𝑄𝑇𝑄 = 𝐼𝑛×𝑛 ⇒ 𝑄−1 = 𝑄𝑇. The inverse is the transpose.

Problem 2:

Prove that 𝑄𝑄𝑇 = 𝐼𝑛×𝑛.

Solution:

Since 𝑄 is a full rank matrix we can find 𝑄′ such that 𝑄𝑄′ = 𝐼𝑛×𝑛. This gives:

𝑄𝑇𝑄𝑄′ = 𝑄𝑇𝐼𝑛×𝑛 ⇒ 𝐼𝑛×𝑛 𝑄
′ = 𝑄𝑇 ⇒ 𝑄′ = 𝑄𝑇

Therefore, we see that 𝑄𝑇 is the two-sided inverse of 𝑄.



Examples of elementary orthogonal matrices. Rotation matrices.

• The rotation matrix of size 2 × 2 is defined as:

𝑄 =
cos𝜃 −sin𝜃
sin𝜃 cos𝜃

and 𝑄𝑇 = 𝑄−1=
cos𝜃 sin𝜃
−sin𝜃 cos𝜃

Problems:

 The columns (and rows) of 𝑄 are orthogonal (straightforward to prove).

 The columns (and rows) of 𝑄 are vectors of magnitude 1 (also straightforward).

 Explain the effect that the rotation matrix has on vectors 𝑗 =
0
1

and 𝑖 =
1
0

, when 

it multiplies them from the left.

 The matrix causes rotation of the vectors.



• Permutation matrices reorder the rows of identity matrices. Examples are:

𝑄 =
0 1 0
0 0 1
1 0 0

and 𝑄 =
0 1
1 0

. 𝑄𝑇 = 𝑄−1 in both cases.

Problems:

 The columns of 𝑄 are orthogonal (straightforward).

 The columns of 𝑄 are unit vectors (straightforward).

 Explain the effect that the permutation matrices have on a random vector 

𝑥
𝑦
𝑧

or 
𝑥
𝑦 when they multiply the vector from the left.

 Obviously the matrices cause re-ordering of the elements of these vectors.              

Examples of elementary orthogonal matrices

Permutation Matrices



• Householder reflection matrices are defined as:

𝑄 = 𝐼 − 2𝑢𝑢𝑇 with 𝑢 any vector that satisfies the condition 𝑢𝑇𝑢 = 1 (unit vector).

𝑄𝑇 = 𝐼𝑇 − 2𝑢𝑢𝑇 𝑇 = 𝐼 − 2𝑢𝑢𝑇 = 𝑄

𝑄𝑇𝑄 = 𝑄2 = 𝐼 − 2𝑢𝑢𝑇 𝐼 − 2𝑢𝑢𝑇 = 𝐼 − 4𝑢𝑢𝑇 + 4𝑢𝑢𝑇 𝑢𝑢𝑇 and 𝑢𝑇 𝑢 = 1 and 

therefore, 𝑄𝑇𝑄 = 𝑄2 = 𝐼 − 4𝑢𝑢𝑇 + 4𝑢𝑢𝑇 = 𝐼

Problems:

 For 𝑢1 = 1 0 𝑇 and 𝑢2 = 1/ 2 −1/ 2
𝑇

find 𝑄𝑖 = 𝐼 − 2𝑢𝑖𝑢𝑖
𝑇, 𝑖 = 1,2.

 Explain the effect that matrix 𝑄1 has on the vector 
𝑥
𝑦 when it multiplies the 

vector from the left.

 Explain the effect that matrix 𝑄2 has on the vector 
𝑥
𝑦 when it multiplies the 

vector from the left.

• A generalized definition is 𝑄 = 𝐼 − 2
𝑣𝑣𝑇

𝑣 2 with 𝑣 any column vector.

Examples of elementary orthogonal matrices

Householder Reflection Matrices



• The goal here is to start with three independent vectors 𝑎, 𝑏, 𝑐 and construct three 

orthogonal vectors 𝐴, 𝐵, 𝐶 and finally three orthonormal vectors.

𝑞1 = 𝐴/ 𝐴 , 𝑞2 = 𝐵/ 𝐵 , 𝑞3 = 𝐶/ 𝐶

• We begin by choosing 𝐴 = 𝑎. This first direction is accepted.

• The next direction 𝐵 must be perpendicular to 𝐴. We start with 𝑏 and subtract its 

projection along 𝐴. This leaves the part of 𝑏 which we call vector 𝐵 (what we 

knew before as the error of projection), defined as:

𝐵 = 𝑏 −
𝐴𝐴𝑇

𝐴𝑇𝐴
𝑏

The Gram-Schmidt process



Problem:

Show that 𝐴 and 𝐵 are orthogonal. Note that 𝐴 = 𝑎.

Solution:

𝐴𝑇𝐵 = 𝐴𝑇𝑏 − 𝐴𝑇
𝐴𝐴𝑇

𝐴𝑇𝐴
𝑏 = = 𝐴𝑇𝑏 −

𝐴𝑇𝐴𝐴𝑇

𝐴𝑇𝐴
𝑏 = 𝐴𝑇𝑏 − 𝐴𝑇𝑏 = 0

The inner product between 𝐴 and 𝐵 is 0 and therefore, 𝐴 and 𝐵 are orthogonal.

Problem:

Show that if 𝑎 and 𝑏 are independent then 𝐵 is not zero.

𝐵 = 𝑏 −
𝐴𝐴𝑇

𝐴𝑇𝐴
𝑏

Solution:

The vector 
𝐴𝐴𝑇

𝐴𝑇𝐴
𝑏 is the projection of vector 𝑏 onto vector 𝑎. In order for 𝐵 to be 

zero the projection of vector 𝑏 onto vector 𝑎 must be equal to 𝑏 itself. This 

happens only when 𝑎 and 𝑏 are dependent.

The Gram-Schmidt process



• The third direction starts with 𝑐. This is not a combination of 𝐴 and 𝐵.

• Most likely 𝑐 is not already perpendicular to 𝐴 and 𝐵 .

• Therefore, we subtract the projections of 𝑐 along 𝐴 and 𝐵 to get 𝐶:

𝐶 = 𝑐 −
𝐴𝐴𝑇

𝐴𝑇𝐴
𝑐 −

𝐵𝐵𝑇

𝐵𝑇𝐵
𝑐

• In general we subtract from every new vector its projections in the 

directions already set.

• If we had a fourth vector 𝑑, we would subtract three projections onto 

𝐴, 𝐵, 𝐶 to get 𝐷.

• We make the resulting vectors orthonormal.

• This is done by dividing the vectors

with their magnitudes.

The Gram-Schmidt process



• Assume matrix 𝐴 whose columns are 𝑎, 𝑏, 𝑐.

• Assume matrix 𝑄 whose columns are 𝑞1, 𝑞2, 𝑞3 defined previously.

• We are looking for a matrix 𝑅 such that 𝐴 = 𝑄𝑅. Since 𝑄 is an orthogonal matrix 

we have that 𝑅 = 𝑄𝑇𝐴.

𝑅 = 𝑄𝑇𝐴 =

𝑞1
𝑇

𝑞2
𝑇

𝑞3
𝑇

𝑎 𝑏 𝑐 =

𝑞1
𝑇𝑎 𝑞1

𝑇𝑏 𝑞1
𝑇𝑐

𝑞2
𝑇𝑎 𝑞2

𝑇𝑏 𝑞2
𝑇𝑐

𝑞3
𝑇𝑎 𝑞3

𝑇𝑏 𝑞3
𝑇𝑐

• We know that from the method that was used to construct 𝑞𝑖 we have 

𝑞2
𝑇𝑎 = 0,  𝑞3

𝑇𝑎 = 0,  𝑞3
𝑇𝑏 = 0 (see Appendix)

and therefore,

𝑅 =

𝑞1
𝑇𝑎 𝑞1

𝑇𝑏 𝑞1
𝑇𝑐

0 𝑞2
𝑇𝑏 𝑞2

𝑇𝑐

0 0 𝑞3
𝑇𝑐

• 𝑄𝑅 decomposition can facilitate the solution of the system 𝐴𝑥 = 𝑏, since 𝐴𝑥 =
𝑏 ⇒ 𝑄𝑅𝑥 = 𝑏 ⇒ 𝑅𝑥 = 𝑄𝑇𝑏. The later system is easy to solve due to the upper 

triangular form of 𝑅.

• So far you have learnt two types of decompositions: the 𝑳𝑼 and the 𝑸𝑹.

The factorization A=QR known as QR decomposition



• Any matrix 𝑨 of dimension 𝒎×𝒏 with independent columns can be 

factored into 𝑸𝑹.

• The 𝑚 × 𝑛 matrix 𝑄 has orthonormal columns.

• The square matrix 𝑅 is upper triangular with positive diagonal.

• 𝐴𝑇𝐴 = 𝑅𝑇𝑄𝑇𝑄𝑅 = 𝑅𝑇𝑅

• With the use of QR decomposition the least squares solution of the system of 

equations 𝐴𝑥 = 𝑏 becomes:

𝐴𝑇𝐴ො𝑥 = 𝐴𝑇𝑏 ⇒ 𝑅𝑇𝑅 ො𝑥 = 𝑅𝑇𝑄𝑇𝑏 ⇒ 𝑅 ො𝑥 = 𝑄𝑇𝑏

• The system of equations 𝑅 ො𝑥 = 𝑄𝑇𝑏 can be easily solved with back-substitution.

Generalization of QR decomposition



• 𝑞2
𝑇𝑎 = 0. The proof of this is straightforward.

• 𝑞3
𝑇𝑎 = 0. In order to prove this we can prove that 𝐶𝑇𝑎 = 0.

𝐶𝑇 = 𝑐𝑇 − 𝑐𝑇
𝐴𝐴𝑇

𝐴𝑇𝐴
− 𝑐𝑇

𝐵𝐵𝑇

𝐵𝑇𝐵
⇒ 𝐶𝑇𝑎 = 𝑐𝑇𝑎 − 𝑐𝑇

𝐴𝐴𝑇

𝐴𝑇𝐴
𝑎 − 𝑐𝑇

𝐵𝐵𝑇

𝐵𝑇𝐵
𝑎 ⇒

𝐶𝑇𝑎 = 𝑐𝑇𝑎 − 𝑐𝑇
𝐴𝐴𝑇

𝐴𝑇𝐴
𝑎 = 0 since 𝐴 = 𝑎.

• 𝑞3
𝑇𝑏 = 0. In order to prove this we can prove that 𝐶𝑇𝑏 = 0.

𝐶𝑇 = 𝑐𝑇 − 𝑐𝑇
𝐴𝐴𝑇

𝐴𝑇𝐴
− 𝑐𝑇

𝐵𝐵𝑇

𝐵𝑇𝐵
⇒ 𝐶𝑇𝑏 = 𝑐𝑇𝑏 − 𝑐𝑇

𝐴𝐴𝑇

𝐴𝑇𝐴
𝑏 − 𝑐𝑇

𝐵𝐵𝑇

𝐵𝑇𝐵
𝑏 ⇒

𝐶𝑇𝑏 = 𝑐𝑇𝑏 + 𝑐𝑇(𝐵 − 𝑏) − 𝑐𝑇
𝐵𝐵𝑇

𝐵𝑇𝐵
𝑏 ⇒ 𝐶𝑇𝑏 = 𝑐𝑇𝐵 − 𝑐𝑇

𝐵𝐵𝑇

𝐵𝑇𝐵
𝑏.

𝐵𝐵𝑇

𝐵𝑇𝐵
𝑏 =

𝐵𝐵𝑇

𝐵𝑇𝐵
(𝐵 +

𝐴𝐴𝑇

𝐴𝑇𝐴
𝑏) =

𝐵𝐵𝑇

𝐵𝑇𝐵
𝐵 +

𝐵𝐵𝑇𝐴𝐴𝑇

𝐵𝑇𝐵𝐴𝑇𝐴
𝑏 but 𝐵𝑇𝐴 = 0. Therefore 

𝐵𝐵𝑇

𝐵𝑇𝐵
𝑏 = 𝐵.

Thus, 𝐶𝑇𝑏 = 𝑐𝑇𝐵 − 𝑐𝑇
𝐵𝐵𝑇

𝐵𝑇𝐵
𝑏= 𝑐𝑇𝐵 − 𝑐𝑇𝐵 = 0.
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