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Positive definite matrices

• A symmetric or Hermitian matrix is positive definite if and only if (iff) all its 

eigenvalues are real and positive. 

• Therefore, the pivots are positive and the determinant is positive.

• However, positive determinant doesn’t guarantee positive definiteness.

Example: Consider the matrix

𝐴 =
5 2
2 3

Eigenvalues are obtained from:

5 − 𝜆 3 − 𝜆 − 4 = 0 ⇒ 𝜆2 − 8𝜆 + 11 = 0

𝜆1,2 =
8 ± 64 − 44

2
=
8 ± 20

2
= 4 ± 5

The eigenvalues are positive and the matrix is symmetric, therefore, the matrix is 

positive definite.



Positive definite matrices cont.

• We are talking about symmetric matrices.

• We have various tests for positive definiteness. Consider the 2 × 2 case of a 

positive definite matrix 𝐴 =
𝑎 𝑏
𝑏 𝑐

.

 The eigenvalues are positive 𝜆1 > 0, 𝜆2 > 0.

 The pivots are positive 𝑎 > 0, 
𝑎𝑐−𝑏2

𝑎
> 0.

 All determinates of leading (“north west”) sub-matrices are positive

𝑎 > 0, 𝑎𝑐 − 𝑏2 > 0.

 𝑥𝑇𝐴 𝑥 > 0, 𝑥 is any vector.

 𝑥𝑇𝐴 𝑥 = 𝑥1 𝑥2
𝑎 𝑏
𝑏 𝑐

𝑥1
𝑥2

= 𝑎𝑥1
2 + 2𝑏𝑥1𝑥2 + 𝑐𝑥2

2. This is called Quadratic 

Form.



Positive semi-definite matrices

• Example: Consider the matrix 
2 6
6 𝑥

 Which sufficiently large values of 𝑥 makes the matrix positive definite? The 

answer is 𝑥 > 18. (The determinant is 2𝑥 − 36 > 0 ⇒ 𝑥 > 18)

 If 𝑥 = 18 we obtain the matrix 
2 6
6 18

.

 For 𝑥 = 18 the matrix is positive semi-definite. The eigenvalues are 𝜆1 = 0
and 𝜆2 = 20. One of its eigenvalues is zero.

 It has only one pivot since the matrix is singular. The pivots are 2 and 0. 

 Its quadratic form is 𝑥1 𝑥2
2 6
6 18

𝑥1
𝑥2

= 2𝑥1
2 + 12𝑥1𝑥2 + 18𝑥2

2.

 In that case the matrix marginally failed the test.



Graph of quadratic form

• In mathematics, a quadratic form is a homogeneous polynomial of degree two 

in a number of variables. For example, the condition for positive-definiteness of a 

2 × 2 matrix, 𝑓 𝑥1, 𝑥2 = 𝑎𝑥1
2 + 2𝑏𝑥1𝑥2 + 𝑐𝑥2

2 , is a quadratic form in the variables 𝑥
and 𝑦.

• For the positive definite case we have:

 Obviously, first derivatives must be zero at the minimum. This condition is not 

enough.

 Second derivatives’ matrix is positive definite, i.e., for 
𝑓𝑥1𝑥1 𝑓𝑥1𝑥2
𝑓𝑥2𝑥1 𝑓𝑥2𝑥2

,

we have 𝑓𝑥1𝑥1 > 0, 𝑓𝑥1𝑥1𝑓𝑥2𝑥2−2𝑓𝑥1𝑥2 > 0.

 Positive for a number turns into positive definite for a matrix.

𝑥1

𝑥2

Not positive definite

Positive definite

𝑥1

𝑥2

minimum



• Example:

2 6
6 20

, trace 𝐴 = 22 = 𝜆1+𝜆2, det 𝐴 = 4 = 𝜆1𝜆2

 𝑥1 𝑥2
2 6
6 20

𝑥1
𝑥2

= 2𝑥1
2 + 12𝑥1𝑥2 + 20𝑥2

2

 𝑓 𝑥1, 𝑥1 = 2𝑥1
2 + 12𝑥1𝑥2 + 20𝑥2

2 = 2 𝑥1 + 3𝑥2
2
+ 2𝑥2

2.

 A horizontal intersection could be 𝑓 𝑥1, 𝑥1 = 1. It is an ellipse.

 Its quadratic form is 2 𝑥1 + 3𝑥2
2
+ 2𝑥2

2 = 1.

Example 1

𝑥1

𝑥2

minimum



Example 1 cont.

• Example:

2 6
6 20

, trace 𝐴 = 22 = 𝜆1+𝜆2, det 𝐴 = 4 = 𝜆1𝜆2

 𝑓 𝑥1, 𝑥2 = 2𝑥1
2 + 12𝑥1𝑥2 + 20𝑥2

2 = 𝟐 𝑥1 + 𝟑𝑥2
2
+ 𝟐𝑥2

2

 Note that computing the square form is effectively elimination

𝐴 =
2 6
6 20 2 −3(1)

𝟐 6
0 𝟐

= 𝑈 and 𝐿 =
1 0
𝟑 1

 The pivots and the multipliers appear in the quadratic form when we 

compute the square.

 Pivots are the multipliers of the squared functions so positive pivots imply 

sum of squares and hence positive definiteness.



Example 2

• Example: Consider the matrix 𝐴 =
2 −1 0
−1 2 −1
0 −1 2

 The leading (“north west”) determinants are 2,3,4.

 The pivots are 2, 3/2, 4/3.

 The quadratic form is 𝒙𝑇𝐴 𝒙 = 2𝑥1
2 + 2𝑥2

2 + 2𝑥3
2 − 2𝑥1 𝑥2 − 2𝑥2 𝑥3 .

 This can be written as:

𝟐 𝑥1 −
1

2
𝑥2

2

+
𝟑

𝟐
𝑥2 −

2

3
𝑥3

2

+
𝟒

𝟑
𝑥3
2

 The eigenvalues of 𝐴 are 𝜆1 = 2 − 2, 𝜆2 = 2, 𝜆3 = 2 + 2

 The matrix 𝐴 is positive definite when 𝒙𝑇𝐴 𝒙 > 0.



Positive definite matrices cont.

• If a matrix 𝐴 is positive-definite, its inverse 𝐴−1 it also positive definite. This 

comes from the fact that the eigenvalues of the inverse of a matrix are equal to 

the inverses of the eigenvalues of the original matrix.

• If matrices 𝐴 and 𝐵 are positive definite, then their sum is positive definite. This 

comes from the fact 𝑥𝑇 𝐴 + 𝐵 𝑥 = 𝑥𝑇𝐴𝑥 +𝑥𝑇 𝐵𝑥 > 0. The same comment holds 

for positive semi-definiteness.

• Consider the matrix 𝐴 of size 𝑚 × 𝑛, 𝑚 ≠ 𝑛 (rectangular, not square). In that case 

we are interested in the matrix 𝐴𝑇𝐴 which is square.

• Is 𝐴𝑇𝐴 positive definite?



The case of 𝑨𝑻𝑨 and 𝑨𝑨𝑻

• Is 𝐴𝑇𝐴 positive definite?

• 𝑥𝑇𝐴𝑇𝐴𝑥 = (𝐴𝑥)𝑇𝐴𝑥 = 𝐴𝑥 2

• In order for 𝐴𝑥 2 > 0 for every 𝑥 ≠ 0, the null space of 𝐴 must be zero.

• In case of 𝐴 being a rectangular matrix of size 𝑚 × 𝑛 with 𝑚 > 𝑛, the rank of 𝐴
must be 𝑛.

• In case of 𝐴 being a rectangular matrix of size 𝑚 × 𝑛 with 𝑚 < 𝑛, the null space 

of 𝐴 cannot be zero and therefore, 𝐴𝑇𝐴 is not positive definite.

• Following the above analysis, it is straightforward to show that 𝐴𝐴𝑇 is positive 

definite if 𝑚 < 𝑛 and the rank of 𝐴 is 𝑚.



Similar matrices

• Consider two square matrices 𝐴 and 𝐵.

• Suppose that for some invertible matrix 𝑀 the relationship 𝐵 = 𝑀−1𝐴𝑀 holds. In 

that case we say that 𝐴 and 𝐵 are similar matrices.

• Example: Consider a matrix 𝐴 which has a full set of eigenvectors. In that case 

𝑆−1𝐴𝑆 = Λ. Based on the above 𝐴 is similar to Λ.

• Similar matrices have the same eigenvalues.

• Matrices with identical eigenvalues are not necessarily similar.

• There are different families of matrices with the same eigenvalues.

• Consider the matrix 𝐴 with eigenvalues 𝜆 and corresponding eigenvectors 𝑥 and 

the matrix 𝐵 = 𝑀−1𝐴𝑀 .

We have 𝐴𝑥 = 𝜆𝑥 ⇒ 𝐴𝑀𝑀−1𝑥 = 𝜆𝑥 ⇒ 𝑀−1𝐴𝑀𝑀−1𝑥 = 𝜆𝑀−1𝑥
𝐵𝑀−1𝑥 = 𝜆𝑀−1𝑥

Therefore, 𝜆 is also an eigenvalue of 𝐵 with corresponding eigenvector 𝑀−1𝑥.



Matrices with identical eigenvalues with some repeated

• Consider the families of matrices with repeated eigenvalues.

• Example: Lets take the 2 × 2 size matrices with eigenvalues 𝜆1 = 𝜆2 = 4.

 The following two matrices 

4 0
0 4

= 4𝐼 and 
4 1
0 4

have eigenvalues 4,4 but they belong to different families.

 There are two families of matrices with eigenvalues 4,4. 

 The matrix 
4 0
0 4

has no “relatives”. The only matrix similar to it, is itself.

 The big family includes 
4 1
0 4

and any matrix of the form 
4 𝑎
0 4

, 𝑎 ≠ 0. These 

matrices are not diagonalizable since they only have one non-zero 

eigenvector.



Singular Value Decomposition (SVD)

• The so called Singular Value Decomposition (SVD) is one of the main 

highlights in Linear Algebra.

• Consider a matrix 𝐴 of dimension 𝑚 × 𝑛 and rank 𝑟.

• I would like to diagonalize 𝐴. What I know so far is 𝐴 = 𝑆Λ𝑆−1. This 

diagonalization has the following weaknesses:

 𝐴 has to be square.

 There are not always enough eigenvectors.

 For example consider the matrix 
1 𝑎
0 1

, 𝑎 ≠ 0. It only has the eigenvector 

𝑥 0 𝑇 .

• Goal: I am looking for a type of decomposition which can be applied to any 

matrix.



Singular Value Decomposition (SVD) cont.

• I am looking for a type of matrix factorization of the form 𝐴 = 𝑈Σ𝑉𝑇 where 𝐴 is 

any real matrix 𝐴 of dimension 𝑚 × 𝑛 and furthermore, 

 𝑈 is a unitary matrix 𝑈𝑇𝑈 = 𝐼 with columns 𝑢𝑖, of dimension 𝑚 ×𝑚. 

 Σ is an 𝑚 × 𝑛 rectangular matrix with non-negative real entries only along the 

main diagonal. The main diagonal is defined by the elements 𝜎𝑖𝑗, 𝑖 = 𝑗.

 𝑉 is a unitary matrix 𝑉𝑇𝑉 = 𝐼 with columns 𝑣𝑖, of dimension 𝑛 × 𝑛.

• 𝑈 is, in general, different to 𝑉.

• The above type of decomposition is called Singular Value Decomposition.

• The non-zero elements of Σ are the so called Singular Values of matrix 𝐴. They 

are chosen to be positive.

• When 𝐴 is a square invertible matrix then 𝐴 = 𝑆Λ𝑆−1.

• When 𝐴 is a symmetric matrix, the eigenvectors of 𝑆 are orthonormal, so 𝐴 =
𝑄Λ𝑄𝑇.

• Therefore, for symmetric matrices SVD is effectively an eigenvector 

decomposition 𝑈 = 𝑄 = 𝑉 and Λ = Σ .

• For complex matrices, transpose must be replaced with conjugate transpose.



Singular Value Decomposition (SVD) cont.

• From 𝐴 = 𝑈Σ𝑉𝑇, the following relationship hold:

𝐴𝑉 = 𝑈Σ

• Do not forget that 𝑈 and 𝑉 are assumed to be unitary matrices and therefore,

𝑈𝑇𝑈 = 𝑈𝑈𝑇 = 𝑉𝑇𝑉 = 𝑉𝑉𝑇 = 𝐼

• If I manage to write 𝐴 = 𝑈Σ𝑉𝑇, the matrix 𝐴𝑇𝐴 is decomposed as:

𝐴𝑇𝐴 = 𝑉Σ𝑇𝑈𝑇𝑈Σ𝑉𝑇 = 𝑉Σ𝑇Σ𝑉𝑇

• In the above expression Σ𝑇Σ is a matrix of dimension 𝑛 × 𝑚 × 𝑚 × 𝑛 = 𝑛 × 𝑛
(square matrix). From the form of the original Σ, you can easily deduct that Σ𝑇Σ is 

a diagonal matrix. It has 𝑟 non-zero elements across the diagonal. These are the 

squares of the singular values of 𝐴 which are located along the main diagonal of 

the rectangular matrix Σ. Σ𝑇Σ = Σ2 if the original matrix 𝐴 is a square matrix.

• Please note the difference between the “diagonal” (square matrices) and the 

“main diagonal” (rectangular matrices).

• Therefore, the above expression is the eigenvector decomposition of 𝐴𝑇𝐴 as 

follows:

𝐴𝑇𝐴 = 𝑉(Σ𝑇Σ)𝑉𝑇



Singular Value Decomposition (SVD) cont.

• Similarly, the eigenvector decomposition of 𝐴𝐴𝑇 is:

𝐴𝐴𝑇 = 𝑈Σ𝑉𝑇𝑉Σ𝑇𝑈𝑇 = 𝑈ΣΣ𝑇𝑈𝑇

• In the above expression ΣΣ𝑇 is a matrix of dimension 𝑚 × 𝑛 × 𝑛 ×𝑚 = 𝑚 ×𝑚. 

Similarly to Σ𝑇Σ, it is a square matrix with 𝑟 non-zero elements across the 

diagonal.

• Based on the properties stated in previous slides, the number and values of non-

zero elements of matrices ΣΣ𝑇 and Σ𝑇Σ are identical. Note that these two matrices 

have different dimensions if 𝑚 ≠ 𝑛. In that case one of them (the bigger one) has 

at least one zero element in its diagonal since they both have rank 𝑟 which is 𝑟 ≤
min(𝑚, 𝑛).

• From this and previous slides, we deduct that we can determine all the factors of 

SVD by the eigenvector decompositions of matrices 𝐴𝑇𝐴 and 𝐴𝐴𝑇.



Useful properties

• Let 𝐴 be an 𝑚 × 𝑛 matrix and let 𝐵 be an 𝑛 × 𝑚 matrix with 𝑛 ≥ 𝑚. Then the 𝑛
eigenvalues of 𝐵𝐴 are the 𝑚 eigenvalues of 𝐴𝐵 with the extra eigenvalues being 

0. Therefore, the non-zero eigenvalues of 𝐴𝐵 and 𝐵𝐴 are identical.

• Therefore: Let 𝐴 be an 𝑚 × 𝑛 matrix with 𝑛 ≥ 𝑚. Then the 𝑛 eigenvalues of 𝐴𝑇𝐴
are the 𝑚 eigenvalues of 𝐴𝐴𝑇 with the extra eigenvalues being 0. Similar 

comments for 𝑛 ≤ 𝑚 are valid.

• Matrices 𝐴, 𝐴𝑇𝐴 and 𝐴𝐴𝑇 have the same rank.

• Let 𝐴 be an 𝑚 × 𝑛 matrix with 𝑛 ≥ 𝑚 and rank 𝑟. The matrix 𝐴 has 𝑟 singular 

values. Both 𝐴𝑇𝐴 and 𝐴𝐴𝑇 have 𝑟 non-zero eigenvalues which are the squares of 

the singular values of 𝐴. Furthermore:

 𝐴𝑇𝐴 is of dimension 𝑛 × 𝑛. It has 𝑟 eigenvectors 𝑣1 … 𝑣𝑟 associated with 

its 𝑟 non-zero eigenvalues and 𝑛 − 𝑟 eigenvectors associated with its 𝑛 − 𝑟
zero eigenvalues.

 𝐴𝐴𝑇 is of dimension 𝑚 ×𝑚. It has 𝑟 eigenvectors 𝑢1 … 𝑢𝑟 associated with 

its 𝑟 non-zero eigenvalues and 𝑚 − 𝑟 eigenvectors associated with its 𝑚 − 𝑟
zero eigenvalues.



Singular Value Decomposition (SVD) cont.

• I can write 𝑉 = 𝑣1 … 𝑣𝑟 𝑣𝑟+1 … 𝑣𝑛 and 𝑈 = 𝑢1 … 𝑢𝑟 𝑢𝑟+1 … 𝑢𝑚 .

• Matrices 𝑈 and 𝑉 have already been defined previously.

• Note that in the above matrices, I put first in the columns the eigenvectors of 𝐴𝑇𝐴
and 𝐴𝐴𝑇 which correspond to non-zero eigenvalues.

• To take the above even further, I order the eigenvectors according to the 

magnitude of the associated eigenvalue.

• The eigenvector that corresponds to the maximum eigenvalue is placed in the 

first column and so on.

• This ordering is very helpful in various real life applications.



Singular Value Decomposition (SVD) cont.

• As already shown, from 𝐴 = 𝑈Σ𝑉𝑇 we obtain that 𝐴𝑉 = 𝑈Σ or

𝐴 𝑣1 … 𝑣𝑟 𝑣𝑟+1 … 𝑣𝑛 = 𝑢1 … 𝑢𝑟 𝑢𝑟+1 … 𝑢𝑚 Σ

• Therefore, we can break 𝐴𝑉 = 𝑈Σ into a set of relationships of the form 𝐴𝑣𝑖 =
𝜎𝑖𝑢𝑖. Note that 𝜎𝑖 is a scalar and 𝑣𝑖 and 𝑢𝑖 vectors.

• For 𝑖 ≤ 𝑟 the relationship 𝐴𝑉 = 𝑈Σ tells us that:

 The vectors 𝑣1, 𝑣2, … , 𝑣𝑟 are in the row space of 𝐴. This is because from 𝐴𝑉 =

𝑈Σ we have 𝑈𝑇𝐴𝑉𝑉𝑇 = 𝑈𝑇𝑈Σ𝑉𝑇 ⇒ 𝑈𝑇𝐴 = Σ𝑉𝑇 ⇒ 𝑣𝑖
𝑇 =

1

𝜎𝑖
𝑢𝑖
𝑇𝐴, 𝜎𝑖 ≠ 0.

Furthermore, since the 𝑣𝑖’s associated with 𝜎𝑖 ≠ 0 are orthonormal, they form 

a basis of the row space.

 The vectors 𝑢1, 𝑢2, … , 𝑢𝑟 are in the column space of 𝐴. This observation comes 

directly from 𝑢𝑖 =
1

𝜎𝑖
𝐴𝑣𝑖 , 𝜎𝑖 ≠ 0, i.e., 𝑢𝑖s are linear combinations of columns of 

𝐴. Furthermore, the 𝑢𝑖s associated with 𝜎𝑖 ≠ 0 are orthonormal. Thus, they 

form a basis of the column space.



Singular Value Decomposition (SVD) cont.

• Based on the facts that:

 𝐴𝑣𝑖 = 𝜎𝑖𝑢𝑖,

 𝑣𝑖 form an orthonormal basis of the row space of 𝐴,

 𝑢𝑖 form an orthonormal basis of the column space of 𝐴, we conclude that:

with SVD, an orthonormal basis of the row space, which is given by the columns 

of 𝑣, is mapped by matrix 𝐴 to an orthonormal basis of the column space given 

by the columns of 𝑢. This comes from 𝐴𝑉 = 𝑈Σ.

• The 𝑛 − 𝑟 additional 𝑣’s which correspond to the zero eigenvalues of matrix 𝐴𝑇𝐴
are taken from the null space of 𝐴.

• The 𝑚 − 𝑟 additional 𝑢’s which correspond to the zero eigenvalues of matrix

𝐴𝐴𝑇 are taken from the left null space of 𝐴.



Examples of different 𝚺 matrices

• We managed to find an orthonormal basis (𝑉) of the row space and an 

orthonormal basis (𝑈) of the column space that diagonalize the matrix 𝐴 to Σ.

• In general, the basis of 𝑉 is different to the basis of 𝑈.

• The SVD is written as:

𝐴 𝑣1 … 𝑣𝑟 𝑣𝑟+1 … 𝑣𝑛 = 𝑢1 … 𝑢𝑟 𝑢𝑟+1 … 𝑢𝑚 Σ

• The form of matrix Σ depends on the dimensions 𝑚, 𝑛, 𝑟. It is of dimension 𝑚 × 𝑛. 

Its elements are chosen as:

Σ𝑖𝑗 = ቐ 𝜎𝑖
2 = 𝜎𝑖 𝑖 = 𝑗, 1 ≤ 𝑖, 𝑗 ≤ 𝑟

0 otherwise

 𝜎𝑖
2 are the non-zero eigenvalues of 𝐴𝑇𝐴 or 𝐴𝐴𝑇.

 𝜎𝑖
2 are the non-zero singular values of 𝐴.



Examples of different 𝚺 matrices cont.

• Example: 𝑚 = 𝑛 = 𝑟 = 3.

Σ =

𝜎1
2 0 0

0 𝜎2
2 0

0 0 𝜎3
2

• Example: 𝑚 = 4, 𝑛 = 3, 𝑟 = 2.

Σ =

𝜎1
2

0

0

𝜎2
2

0
0

0 0 0
0 0 0



Truncated or Reduced Singular Value Decomposition

• In the expression for SVD we can reformulate the dimensions of all matrices 

involved by ignoring the eigenvectors which correspond to zero eigenvalues.

• In that case we have:

𝐴 𝑣1 … 𝑣𝑟 = 𝑢1 … 𝑢𝑟

𝜎1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝜎𝑟

⇒ 𝐴 = 𝑢1𝜎1𝑣1
𝑇 +⋯+ 𝑢𝑟𝜎𝑟𝑣𝑟

𝑇

where:

 The dimension of 𝐴 is 𝑚 × 𝑛.

 The dimension of 𝑣1 … 𝑣𝑟 is 𝑛 × 𝑟.

 The dimension of 𝑢1 … 𝑢𝑟 is 𝑚 × 𝑟.

 The dimension of Σ is 𝑟 × 𝑟.

• The above formulation is called Truncated or Reduced Singular Value 

Decomposition.

• As seen, the Truncated SVD gives the splitting of 𝐴 into a sum of 𝑟 matrices, each of 

rank 1.

• In the case of a square, invertible matrix (𝑚 = 𝑛 = 𝑟), the two decompositions are 

identical. 



Singular Value Decomposition. Example 1.

• Example: 𝐴 =
4 4
−3 3

and 𝐴𝑇𝐴 =
4 −3
4 3

4 4
−3 3

=
25 7
7 25

• The eigenvalues of 𝐴𝑇𝐴 are 𝜎1
2 = 32 and 𝜎2

2 = 18.

• The eigenvectors of 𝐴𝑇𝐴 are 𝑣1 =
ൗ1 2

ൗ1 2

and 𝑣2 =
ൗ1 2

− ൗ1 2

𝐴𝑇𝐴 = 𝑉Σ2𝑉𝑇

• Similarly 𝐴𝐴𝑇 =
4 4
−3 3

4 −3
4 3

=
32 0
0 18

• Therefore, the eigenvectors of  𝐴𝐴𝑇are 𝑢1 =
1
0

and  𝑢2 =
0
−1

and 𝐴𝐴𝑇 =

𝑈Σ2𝑈𝑇 .

• CAREFUL: 𝑢𝑖 ’s are chosen to satisfy the relationship 𝑢𝑖 =
1

𝜎𝑖
𝐴𝑣𝑖, 𝑖 = 1,2.

• Therefore, the SVD of 𝐴 =
4 4
−3 3

is:

𝐴 = 𝑈Σ𝑉𝑇 =
1 0
0 −1

32 0

0 18

ൗ1
2

ൗ1
2

ൗ1
2

ൗ−1
2

=
4 4
−3 3



Singular Value Decomposition. Example 2.

• Example: 𝐴 =
4 3
8 6

(singular) and 𝐴𝑇𝐴 =
4 8
3 6

4 3
8 6

=
80 60
60 45

• The eigenvalues of 𝐴𝑇𝐴 are 𝜎1
2 = 125 and 𝜎2

2 = 0.

• The eigenvectors of 𝐴𝑇𝐴 are 𝑣1 =
Τ4 5

Τ3 5
and 𝑣2 =

Τ4 5

− Τ3 5

𝐴𝑇𝐴 = 𝑉Σ2𝑉𝑇

• Similarly 𝐴𝐴𝑇 =
4 3
8 6

4 8
3 6

=
25 50
50 100

• 𝑢1 is chosen to satisfy the relationship 𝑢1 =
1

𝜎1
𝐴𝑣1 =

1

125

5
10

=
1

5

1
2

.

• 𝑢2 is chosen to be perpendicular to 𝑢1. Note that the presence of 𝑢2 and 𝑣2 does 

not affect the calculations, since their elements are multiplied by zeros.

• Therefore, the SVD of 𝐴 =
4 3
8 6

is:

𝐴 = 𝑈 Σ 𝑉𝑇 =
ൗ1
5

ൗ2
5

ൗ2
5

− ൗ1
5

5 5 0
0 0

ൗ4 5 ൗ3 5

ൗ4 5 − ൗ3 5

=
4 3
8 6



Singular Value Decomposition. Example 2 cont.

• The SVD of 𝐴 =
4 3
8 6

is:

𝐴 = 𝑈 Σ 𝑉𝑇 =
ൗ1
5

ൗ2
5

ൗ2
5

− ൗ1
5

5 5 0
0 0

ൗ4 5 ൗ3 5

ൗ4 5 − ൗ3 5

=
4 3
8 6

• The truncated SVD is:

𝐴 = 𝑈 Σ 𝑉𝑇 =
ൗ1
5

ൗ2
5

5 5 4/5 3/5 =
4 3
8 6



Singular Value Decomposition. Example 3.

• Example: 𝐴 =
1 1 0
0 1 1

. We see that 𝑟 = 2. 𝐴𝑇𝐴 =
1 0
1 1
0 1

1 1 0
0 1 1

=
1 1 0
1 2 1
0 1 1

.

• The eigenvalues of 𝐴𝑇𝐴 are 𝜎1
2 = 3 and 𝜎2

2 = 1 and 𝜎3
2 = 0 (obviously).

• The eigenvectors of 𝐴𝑇𝐴 are 𝑣1 =

1/ 6

2/ 6

1/ 6

, 𝑣2 =
1/ 2
0

−1/ 2

and 𝑣3 = −

1/ 3

1/ 3

1/ 3

.

• Similarly 𝐴𝐴𝑇 =
1 1 0
0 1 1

1 0
1 1
0 1

=
2 1
1 2

.

• 𝑢1 is chosen to satisfy the relationship 𝑢1 =
1

𝜎1
𝐴𝑣1 =

1

2

1
1

.

• 𝑢2 is chosen to satisfy the relationship 𝑢2 =
1

𝜎2
𝐴𝑣2 =

1

2

1
−1

. Note that the presence 

of 𝑣3 does not affect the calculations, since its elements are multiplied by zeros.



Singular Value Decomposition. Example.

• Therefore, the SVD of 𝐴 =
1 1 0
0 1 1

is

𝐴 =
1/ 2 1/ 2

1/ 2 −1/ 2
3 0 0
0 1 0

1/ 6 2/ 6 1/ 6

1/ 2 0 −1/ 2

1/ 3 −1/ 3 1/ 3

• The truncated SVD for this example is:

𝐴 =
1/ 2 1/ 2

1/ 2 −1/ 2
3 0
0 1

1/ 6

1/ 2

2/ 6
0

1/ 6

−1/ 2



Pseudoinverse

• Suppose that 𝐴 is a matrix of dimension 𝑚 × 𝑛 and rank 𝑟. The SVD of matrix 𝐴 is 

given by:

𝐴 = 𝑈Σ𝑉𝑇

• I define a matrix Σ+ of dimension 𝑛 × 𝑚 as follows:

Σ𝑖𝑗
+ = ቐ1/ 𝜎𝑖

2 𝑖 = 𝑗, 1 ≤ 𝑖, 𝑗 ≤ 𝑟

0 otherwise

• The matrix 𝐴+ = 𝑉 Σ+𝑈𝑇 is called the Pseudoinverse of matrix 𝐴 or the Moore 

Penrose inverse.

• 𝐴+𝐴 = 𝑉 Σ+𝑈𝑇 𝑈Σ𝑉𝑇 = 𝑉 Σ+Σ𝑉𝑇.

• The matrix Σ+Σ is of dimension 𝑛 × 𝑛 (square) and has rank 𝑟. It is defined as 

follows:

(Σ+Σ)𝑖𝑗= ቊ
1 𝑖 = 𝑗, 1 ≤ 𝑖, 𝑗 ≤ 𝑟
0 otherwise

• 𝐴𝐴+ = 𝑈Σ𝑉𝑇𝑉 Σ+𝑈𝑇 = 𝑈Σ Σ+𝑈𝑇.

• The matrix Σ Σ+ is of dimension 𝑚 ×𝑚 and has rank 𝑟. It is defined as Σ+Σ above.



Pseudoinverse

• Note that Σ+Σ and Σ Σ+ have different dimensions.

• Note that Σ+Σ and Σ Σ+ look like identity matrices where the last (𝑛 − 𝑟) or (𝑚 −
𝑟) diagonal elements have been replaced by zeros.

• If 𝑚 ≥ 𝑛 and the rank of 𝐴 is 𝑛 then Σ+Σ = 𝐼𝑛×𝑛. In that case

𝐴+𝐴 = 𝑉 Σ+𝑈𝑇 𝑈Σ𝑉𝑇 = 𝑉 Σ+Σ𝑉𝑇 = 𝑉 𝑉𝑇 = 𝐼𝑛×𝑛.

Therefore, 𝐴+ is a left inverse matrix of 𝐴.

• If 𝑚 ≤ 𝑛 and the rank of 𝐴 is 𝑚 then Σ Σ+ = 𝐼𝑚×𝑚. In that case 𝐴𝐴+ = 𝐼𝑚×𝑚. 

Therefore, 𝐴+ is a right inverse matrix of 𝐴.



Pseudoinverse cont.

• As already proved, the relationship 𝐴𝑣𝑖 = 𝜎𝑖𝑢𝑖, which comes directly from 𝐴𝑉 =
𝑈Σ, maps a vector from the row space to the column space.

• Similarly, from 𝐴+ = 𝑉 Σ+𝑈𝑇 we get 𝐴+𝑈 = 𝑉 Σ+ and therefore, 𝐴+𝑢𝑖=
1

𝜎𝑖
𝑣𝑖. 

Therefore, the multiplication of a vector from the column space with the pseudo 

inverse 𝐴+, gives a the vector in the row space.



Other types of matrix inverses

Consider a matrix 𝐴 of dimension 𝑚 × 𝑛 and rank 𝑟. The following cases hold:

• 𝑟 = 𝑚 = 𝑛. In that case 𝐴𝐴−1 = 𝐼 = 𝐴−1𝐴. The matrix 𝐴 has a two-sided inverse 

or simply an inverse.

• 𝑟 = 𝑛 < 𝑚 (more rows thank columns)

 The matrix has full column rank (independent columns).

 Null space = 0 .

 0 or 1 solutions to 𝐴𝑥 = 𝑏.

In that case 𝐴𝑇𝐴 of dimension 𝑛 × 𝑛 is invertible and 𝐴 has a left inverse only.

• 𝑟 = 𝑚 < 𝑛 (more columns than rows)

 The matrix has full row rank (independent rows).

 There are 𝑛 − 𝑚 free variables.

 Left null space = 0 .

 Infinite solutions to 𝐴𝑥 = 𝑏.

 In that case 𝐴𝐴𝑇 of dimension 𝑚 ×𝑚 is invertible and

𝐴 has a right inverse only.

𝐴𝑙𝑒𝑓𝑡
−1 𝐴 = 𝐼𝑛×𝑛

𝑛 × 𝑚

𝐴𝑇𝐴 −1𝐴𝑇𝐴 = 𝐼𝑛×𝑛

𝑚 × 𝑛

𝐴𝐴𝑇 𝐴𝐴𝑇 −1 = 𝐼𝑚×𝑚

𝐴 𝐴𝑟𝑖𝑔ℎ𝑡
−1 = 𝐼𝑚×𝑚

𝑚 𝑥 𝑛 𝑛 𝑥 𝑚


