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« A symmetric or Hermitian matrix is positive definite if and only if (iff) all its
eigenvalues are real and positive.

« Therefore, the pivots are positive and the determinant is positive.
» However, positive determinant doesn’t guarantee positive definiteness.

Example: Consider the matrix

_[5 2
A= lz 3]
Eigenvalues are obtained from:
G-1DB-1)—-4=0=>12-81+11=0
8+64—44 8++/20

The eigenvalues are positive and the matrix is symmetric, therefore, the matrix is
positive definite.
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* We are talking about symmetric matrices.
* We have various tests for positive definiteness. Consider the 2 X 2 case of a
. . : b
ositive definite matrix 4 = |¢ :
P [b c]

» The eigenvalues are positive 1, > 0,4, > 0.

ac—b?

= The pivots are positive a > 0, > 0.

= All determinates of leading (“north west”) sub-matrices are positive
a>0,ac— b?>0. j

= xTAx >0, x is any vector.

x'Ax =[X1 X2] [b C] [le = axi + 2bx,x, + cx5. This is called Quadratic
Form.
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Example: Consider the matrix lé )66

= Which sufficiently large values of x makes the matrix positive definite? The
answer is x > 18. (The determinant is 2x — 36 > 0 = x > 18)

= |f x = 18 we obtain the matrix lé 168]'

» For x = 18 the matrix is positive semi-definite. The eigenvalues are 1, = 0
and A, = 20. One of its eigenvalues is zero.

= |t has only one pivot since the matrix is singular. The pivots are 2 and 0.
. . . 2 6 X1 _ 2 2
Its quadratic form is [X1 X3] p 18] [le = 2x{ + 12x,x, + 18x5.

* |n that case the matrix marginally failed the test.
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* In mathematics, a quadratic form is a homogeneous polynomial of degree two
in a number of variables. For example, the condition for positive-definiteness of a
2 x 2 matrix, f(xq,x,) = ax? + 2bx,x, + cx2 , is a quadratic form in the variables x
and y. A 4

Positive definite

Not positive definite /
Xq "X
minimum
X2

X2

« For the positive definite case we have:

= Obviously, first derivatives must be zero at the minimum. This condition is not
enough.

= Second derivatives’ matrix is positive definite, i.e., for

fxlxl fxlle
fXZ.X'l szXZ ,

we have fx1x1 > 0’ fxlxlfxzxz _fole > 0'
= Positive for a number turns into positive definite for a matrix.
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Example 1

« Example:

2 260], trace(4) = 22 = 1;+4,, det(4) = 4 = 4414,

2 6]1[*
[X1  x2] p 20] lle = 2x% + 12x,x, + 20x3
2
fxy,x1) = 2x2 + 121, + 20x2 = 2(x; +3x, ) + 2x3.
\ /

AN

X1

minimum

X2

A horizontal intersection could be f(x;,x;) = 1. Itis an ellipse.

. ; 2
Its quadratic form is 2(x; +3x, )" +2xZ = 1.
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Example 1cont.

« Example:

2 260], trace(4) = 22 = 1;+4,, det(4) = 4 = 4414,

2
fxy,x1) = 2x2 + 12,5 + 20x2 = 2(x; +3x, ) + 2x2
= Note that computing the square form is effectively elimination

_[2 6 2 6] _ _[1 0
A= l6 20] (2)-3(1) lO 2] =UandL = l3 1
» The pivots and the multipliers appear in the quadratic form when we
compute the square.

» Pivots are the multipliers of the squared functions so positive pivots imply
sum of squares and hence positive definiteness.
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Example 2
2 -1 0
Example: Consider the matrix A = -1 2 —1‘
0 -1 2

» The leading (“north west”) determinants are 2,3,4.
= The pivots are 2, 3/2, 4/3.

= The quadratic form is xTA x = 2x% + 2x% + 2x5 — 2x; x, — 2Xxy X3 .
= This can be written as:

1\ 3 2 \* 4,
2x1—§x2 +E Xz =3 X3 +§x3

» TheeigenvaluesofAaredl; =2—v2, 1, =2, =242
= The matrix A is positive definite when x’4 x > 0.
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If a matrix A is positive-definite, its inverse A1 it also positive definite. This
comes from the fact that the eigenvalues of the inverse of a matrix are equal to
the inverses of the eigenvalues of the original matrix.

If matrices A and B are positive definite, then their sum is positive definite. This
comes from the fact xT (4 + B)x = xTAx +xT Bx > 0. The same comment holds

for positive semi-definiteness.

Consider the matrix A of size m X n, m # n (rectangular, not square). In that case
we are interested in the matrix AT A which is square.

Is AT A positive definite?
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Thecaseof A”A and 44"

Is AT A positive definite?
xTATAx = (Ax)TAx = ||Ax]||?
In order for ||Ax||? > 0 for every x # 0, the null space of A must be zero.

In case of A being a rectangular matrix of size m x n with m > n, the rank of 4
must be n.

In case of A being a rectangular matrix of size m x n with m < n, the null space
of A cannot be zero and therefore, AT A is not positive definite.

Following the above analysis, it is straightforward to show that AAT is positive
definite if m < n and the rank of A is m.
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Consider two square matrices A and B.

Suppose that for some invertible matrix M the relationship B = M~14AM holds. In
that case we say that A and B are similar matrices.

Example: Consider a matrix A which has a full set of eigenvectors. In that case
S~1AS = A. Based on the above A4 is similar to A.

Similar matrices have the same eigenvalues.
Matrices with identical eigenvalues are not necessarily similar.
There are different families of matrices with the same eigenvalues.

Consider the matrix A with eigenvalues A and corresponding eigenvectors x and
the matrix B = M~ 1AM .

We have Ax = Ax > AMM 'x = Ax > M~1AMM~'x = AM~1x
BM~'x = AM~1x
Therefore, 1 is also an eigenvalue of B with corresponding eigenvector M~ 1x.
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« Consider the families of matrices with repeated eigenvalues.
« Example: Lets take the 2 X 2 size matrices with eigenvalues 1, = 4, = 4.
= The following two matrices

4 01 _ 4 1
04—41and04

have eigenvalues 4,4 but they belong to different families.
= There are two families of matrices with eigenvalues 4,4.

= The matrix [g 2] has no “relatives”. The only matrix similar to it, is itself.

4 a

0 4
matrices are not diagonalizable since they only have one non-zero

eigenvector.

= The big family includes [g ﬂ and any matrix of the form , a # 0. These
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* The so called Singular Value Decomposition (SVD) is one of the main
highlights in Linear Algebra.

 Consider a matrix A of dimension m X n and rank r.

« | would like to diagonalize A. What | know so far is A = SAS™1. This
diagonalization has the following weaknesses:

= A has to be square.
= There are not always enough eigenvectors.

» For example consider the matrix [(1) Cll] a + 0. It only has the eigenvector
[x o0]T.

 Goal: I am looking for a type of decomposition which can be applied to any
matrix.
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| am looking for a type of matrix factorization of the form A = UZVT where A is
any real or complex matrix A of dimension m X n and furthermore,

= U is a unitary matrix (UTU = I) with columns u;, of dimension m x m.

= ¥ is an m X n rectangular matrix with non-negative real entries only along the
main diagonal. The main diagonal is defined by the elements o;;, i = .

= V is a unitary matrix (VTV = I) with columns v;, of dimension n x n.

U is, in general, different to V.

The above type of decomposition is called Singular Value Decomposition.
The elements of Z are the so called Singular Values of matrix A.

When A is a square invertible matrix then 4 = SAS™1.

When A is a symmetric matrix, the eigenvectors of S are orthonormal, so A =
QAQ".

Therefore, for symmetric matrices SVD is effectively an eigenvector
decomposition U =Q =V and A=ZX.
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From A = UZVT, the following relationship hold:
AV = UX

Do not forget that U and V are assumed to be unitary matrices and therefore,
Utu =vtv =1

If | manage to write A = UXVT, the matrix ATA is decomposed as:
ATA =vzuTuzyT =vzevT

Therefore, the above expression is the eigenvector decomposition of AT A.

Similarly, the eigenvector decomposition of AAT is:
AAT =UzvTvzuT = uzcuT

Thus, we can determine all the factors of SVD by the eigenvector decompositions
of matrices ATA and AAT.
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Let A be an m X n matrix and let B be an n X m matrix with n = m. Then the n
eigenvalues of BA are the m eigenvalues of AB with the extra eigenvalues being
0. Therefore, the non-zero eigenvalues of AB and BA are identical.

Therefore: Let A be an m x n matrix with n > m. Then the n eigenvalues of AT A
are the m eigenvalues of AAT with the extra eigenvalues being 0. Similar
comments for n < m are valid.

Matrices A, ATA and AAT have the same rank.

Let A be an m X n matrix with n = m and rank r. The matrix A has r non-zero
singular values. Both A”A and AA” have r non-zero eigenvalues which are the
squares of the singular values of A. Furthermore:

= AT A is of dimension n x n. It has r eigenvectors [V1 .. V] associated with
its r non-zero eigenvalues and n — r eigenvectors associated with its n — r
zero eigenvalues.

= AAT is of dimension m x m. It has r eigenvectors [u1 .. U] associated with
its r non-zero eigenvalues and m — r eigenvectors associated with its m — r
zero eigenvalues.
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lcanwrite V=[V1 -« UV Vpyq . Vpland U =[U1 - Uy Upyr - Up].
Matrices U and IV have already been defined previously.

Note that in the above matrices, | put first in the columns the eigenvectors of ATA
and AAT which correspond to non-zero eigenvalues.

To take the above even further, | order the eigenvectors according to the
magnitude of the associated eigenvalue.

The eigenvector that corresponds to the maximum eigenvalue is placed in the
first column and so on.

This ordering is very helpful in various real life applications.
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As already shown, from A = UXVT we obtain that AV = UX or
AlV1 - VU VUpgq e Uyl =[UL o Up Upgpr e Up]D

Therefore, we can break AV = UX into a set of relationships of the form Av; =
o;u;.

For i < r the relationship AV = UZX tells us that:
= The vectors vy, v,, ..., 13- are in the row space of A. This is because from AV =
Us we have UTAVVT = UTUSVT = UTA=3VT = v" =~u’4, g; % 0.

Oj
Furthermore, since the v;’'s associated with g; # 0 are orthonormal, they form
a basis of the row space.

= The vectors uq, u,, ..., u,- are in the column space of A. This observation comes
. 1 . . . .
directly from u; = ;Avi, o; + 0, I.e., u;s are linear combinations of columns of
l

A. Furthermore, the u;s associated with g; # 0 are orthonormal. Thus, they
form a basis of the column space.
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« Based on the facts that:
" Av; = o;u;,
= yp; form an orthonormal basis of the row space of A4,
» y; form an orthonormal basis of the column space of 4, we conclude that:

with SVD an orthonormal basis in the row space, which is given by the columns
of v, is mapped by matrix A to an orthonormal basis in the column space given
by the columns of u. This comes from AV = UZX.

« The n — r additional v’s which correspond to the zero eigenvalues of matrix AT A
are taken from the null space of A.

« The m — r additional u’s which correspond to the zero eigenvalues of matrix
AAT are taken from the left null space of A.
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We managed to find an orthonormal basis (V) of the row space and an
orthonormal basis (U) of the column space that diagonalize the matrix A to X.

In the generic case, the basis of V would be different to the basis of U.

The SVD is written as:
AlV1 o Ur Vppr e Up]=[Ur o U Upyg o Up]X
The form of matrix £ depends on the dimensions m, n,r. It is of dimension m X n.
Z={)2ii=ai2 1<i<r
0 otherwise
Example: m =n =r = 3.

gz 0 0
0 o7 O
0 0 o2

Example: m = 4,n = 3,r = 2.
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Truncated or Reduced Singular Value Decomposition

In the expression for SVD we can reformulate the dimensions of all matrices
Involved by ignoring the eigenvectors which correspond to zero eigenvalues.

In that case we have:

g - 0
A1 o V] =JUup . Uy l 51 ~ i =>A=uov! ++u.ocvf
0 - o,
where:
» The dimension of A is m X n.
= The dimension of [V1 .. Vr]isnXr.
= The dimension of [U1 ... Ur]ism X,

The dimensionof X isr X r.

The above formulation is called Truncated or Reduced Singular Value
Decomposition.

As seen, the Truncated SVD gives the splitting of A into a sum of r matrices,
each of rank 1.

In the case of a square, invertible matrix, the two decompositions are identical.
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Singular Value Decomposition. Example.
. _[4 4 4 -3114 41 _125 7
Example: A = [_3 3] and ATA = LL 2 H_3 3] = l ; 25]
The eigenvalues of ATA are ¢? = 32 and ¢ = 18.

1/‘/ﬂandvz=[l/‘/§‘

/2 A
ATA = yz2yT

Similarly AAT = ”4 ] [32 108]

The eigenvectors of AT4 are v; =

Therefore, the eigenvectors of AATare u, = [(1)] and u, = [_01] and AAT =
Uz2ur.
CAREFUL: u;’s are chosen to satisfy the relationship u; = iAvi, [ =1,2.

Therefore, the SVD of A = [ 4 4 IS:
1
r_ V32 ] /2 4 4
A=UXV [
lO —1] V1 ll/\/_ —1/ ] -3 3
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80 60

Example: A = lg 2] (singular) and ATA = [;L 2] [g 6l = leo 45

The eigenvalues of ATA are ¢? = 125 and o5 = 0.

4 4
The eigenvectors of ATA are v, = /s and v, = /s
/s —3/s
ATA = VZZVT
o T _[4 3[4
Similarly AAT = o ¢ [3 ] [50 100

. . . . 1 1
u4 IS chosen to satisfy the relationship u; = G—lAv1 = e [10] =7 [2]

u, is chosen to be perpendicular to u,. Note that choice of u, does not affect the
calculations, since its elements are only multiplied by zeros.

Therefore, the SVD of A = [g

1 2
_ T _ /\/E /x/E 5v5 0 4/5 3/5]_4 3
A=UxVE= 2/\/5 _1/\@[ ]4/ _3/5_8 6



