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Symmetric matrices 

• In this lecture we will be interested in symmetric matrices. 

• In case of real matrices, symmetry is defined as 𝐴 = 𝐴𝑇 . 

• In case of complex matrices, symmetry is defined as 𝐴∗ = 𝐴𝑇 or 𝐴∗𝑇 = 𝐴. A matrix 

which possesses this property is called Hermitian. 

• We can also use the symbol 𝐴𝐻 = 𝐴∗
𝑇
. 

• We will prove that the eigenvalues of a symmetric matrix are real. 

• The eigenvectors of a symmetric matrix can be chosen to be orthogonal. If we 

also choose them to have a magnitude of 1, then the eigenvectors can be chosen 

to form an orthonormal set of vectors. 

• For a random matrix with independent eigenvectors we have 𝐴 = 𝑆Λ𝑆−1. 

• For a symmetric matrix with orthonormal eigenvectors we have 

𝐴 = 𝑄Λ𝑄−1= 𝑄Λ𝑄𝑇 

 

 

 



Real matrices 

Problem: 

Prove that the eigenvalues of a real matrix occur in complex conjugate pairs. 

 

Solution: 

Consider 𝐴𝑥 = 𝜆𝑥. 

If we take complex conjugate in both sides we get 

(𝐴𝑥)∗= (𝜆𝑥)∗⇒ 𝐴∗ 𝑥∗ = 𝜆∗ 𝑥∗ 

If 𝐴 is real then 𝐴𝑥∗ = 𝜆∗ 𝑥∗. Therefore, if 𝜆 is an eigenvalue of 𝐴 with corresponding 

eigenvector 𝑥 then 𝜆∗ is an eigenvalue of 𝐴 with corresponding eigenvector 𝑥∗. 

 



Real symmetric matrices 

Problem: 

Prove that the eigenvalues of a symmetric matrix are real. 

 

Solution: 

We proved that if 𝐴 is real then 𝐴𝑥∗ = 𝜆∗ 𝑥∗. 

If we take transpose in both sides we get  

𝑥∗𝑇𝐴𝑇 = 𝜆∗𝑥∗𝑇 ⇒ 𝑥∗𝑇𝐴 = 𝜆∗𝑥∗𝑇 

We now multiply both sides from the right with 𝑥 and we get 

𝑥∗𝑇𝐴𝑥 = 𝜆∗𝑥∗𝑇𝑥 

We take now 𝐴𝑥 = 𝜆𝑥. We now multiply both sides from the left with 𝑥∗𝑇 and we get 

𝑥∗𝑇𝐴𝑥 = 𝜆𝑥∗𝑇𝑥. 

From the above we see that 𝜆𝑥∗𝑇𝑥 = 𝜆∗𝑥∗𝑇𝑥 and since 𝑥∗𝑇𝑥 ≠ 0, we see that 𝜆 =
𝜆∗. 

 

 

 



Complex matrices. Complex symmetric matrices. 

• Let us find which complex matrices have real eigenvalues. 

• Consider 𝐴𝑥 = 𝜆𝑥 with 𝐴 possibly complex. 

• If we take complex conjugate in both sides we get 

(𝐴𝑥)∗= (𝜆𝑥)∗⇒ 𝐴∗ 𝑥∗ = 𝜆∗ 𝑥∗ 

• If we take transpose in both sides we get  

𝑥∗𝑇𝐴∗𝑇 = 𝜆∗𝑥∗𝑇 

• We now multiply both sides from the right with 𝑥 we get 

𝑥∗𝑇𝐴∗𝑇𝑥 = 𝜆∗𝑥∗𝑇𝑥 

• We take now 𝐴𝑥 = 𝜆𝑥. We now multiply both sides from the left with 𝑥∗𝑇 and we 

get 

𝑥∗𝑇𝐴𝑥 = 𝜆𝑥∗𝑇𝑥. 

• From the above we see that if 𝐴∗𝑇 = 𝐴  then 𝜆𝑥∗𝑇𝑥 = 𝜆∗𝑥∗𝑇𝑥 and since 𝑥∗𝑇𝑥 ≠ 0, 

we see that 𝜆 = 𝜆∗. 

 



Complex vectors and matrices 

• Consider a complex column vector 𝑧 = 𝑧1 𝑧2 … 𝑧𝑛 𝑇. 

• Its length is 𝑧∗𝑇𝑧 =  𝑧𝑖
2𝑛

𝑖=1 . 

• As already mentioned, when we both transpose and conjugate we can use the 

symbol 𝑧𝐻 = 𝑧∗
𝑇
 (Hermitian). 

• The inner product of two complex vectors is 𝑦∗𝑇𝑥 = 𝑦𝐻𝑥. 

• For complex matrices the symmetry is defined as 𝐴∗𝑇 = 𝐴. These are called 

Hermitian matrices. 

• They have real eigenvalues and perpendicular unit eigenvectors. If these are 

complex we check their length using 𝑞𝑖
∗𝑇𝑞𝑖 and also 𝑄∗𝑇𝑄 = 𝐼. 

Example: Consider the matrix 

𝐴 =
2 3 + 𝑖

3 − 𝑖 5
 

Eigenvalues are found from: 

2 − 𝜆 5 − 𝜆 − 3 + 𝑖 3 − 𝑖 = 0 
⇒ 𝜆2 − 7𝜆 + 10 − 9 − 3𝑖 + 3𝑖 − 𝑖2 = 0 ⇒ 𝜆 𝜆 − 7 = 0 



Eigenvalue sign 

• We proved that the eigenvalues of a symmetric matrix, either real or complex, are 

real. 

 

• Do not forget the definition of symmetry for complex matrices. 

 

• It can be proven that the signs of the pivots are the same as the signs of the 

eigenvalues. 

 

• Just to remind you: 

Product of pivots=Product of eigenvalues=Determinant 

 

 



Positive definite matrices 

• A symmetric or Hermitian matrix is positive definite if and only if (iff) all its 

eigenvalues are real and positive.  

• Therefore, the pivots are positive and the determinant is positive. 

• Positive determinant doesn’t guarantee positive definiteness. 

 

Example: Consider the matrix 

𝐴 =
5 2
2 3

 

Eigenvalues are obtained from: 

5 − 𝜆 3 − 𝜆 − 4 = 0 ⇒ 𝜆2 − 8𝜆 + 11 = 0 

𝜆1,2 =
8 ± 64 − 44

2
=
8 ± 20

2
= 4 ± 5 

The eigenvalues are positive and the matrix is symmetric, therefore, the matrix is 

positive definite. 

 

 



Positive definite matrices cont. 

• We are talking about symmetric matrices. 

• We have various tests for positive definiteness. Consider the 2 × 2 case of a 

positive definite matrix 𝐴 =
𝑎 𝑏
𝑏 𝑐

. 

 The eigenvalues are positive 𝜆1 > 0, 𝜆2 > 0. 

 

 The pivots are positive 𝑎 > 0, 
𝑎𝑐−𝑏2

𝑎
> 0. 

 

 All determinates of leading (“north west”) sub-matrices are positive 

𝑎 > 0, 𝑎𝑐 − 𝑏2 > 0. 

 

 Quadratic form is positive 𝑥𝑇𝐴 𝑥 > 0, 𝑥 is any vector. 

 

 

 



Positive semi-definite matrices 

• Example: Consider the matrix 
2 6
6 𝑥

 

 

 Which sufficiently large values of 𝑥 makes the matrix positive definite? The 

answer is 𝑥 > 18. In that case we obtain the matrix 
2 6
6 18

. 

 For 𝑥 = 18 the matrix is positive semi-definite. The eigenvalues are 𝜆1 = 0 

and 𝜆2 = 20. One of its eigenvalues is zero. 

 It has only one pivot since the matrix is singular. The pivots are 2 and 0.  

 Its quadratic form is 𝑥1 𝑥2  
2 6
6 18

𝑥1
𝑥2

= 2𝑥1
2 + 12𝑥1𝑥2 + 18𝑥2

2. 

 This is equal to 𝑎𝑥1
2 + 2𝑏𝑥1𝑥2 + 𝑐𝑥2

2 ≥ 0. This formula is a so called quadratic 

form. 

 In that case the matrix marginally failed the test. 

 

 

 



Graph of quadratic form 

• In mathematics, a quadratic form is a homogeneous polynomial of degree two 

in a number of variables. For example, the condition for positive-definiteness of a 

2 × 2 matrix, 𝑓 𝑥1, 𝑥2 = 𝑎𝑥1
2 + 2𝑏𝑥1𝑥2 + 𝑐𝑥2

2 , is a quadratic form in the variables 

𝑥 and 𝑦. 

 

 

 

 

 

• For the positive definite case we have: 

 Obviously, first derivatives must be zero at the minimum. This condition is not 

enough. 

 Second derivatives’ matrix is positive definite 

𝑓𝑥1𝑥1 𝑓𝑥1𝑥2
𝑓𝑥2𝑥1 𝑓𝑥2𝑥2

, 𝑓𝑥1𝑥1𝑓𝑥2𝑥2−2𝑓𝑥1𝑥2 > 0. 

 Positive for a number turns into positive definite for a matrix. 

 

 

𝑥1 

𝑥2 

Not positive definite 

Positive definite 

𝑥1 

𝑥2 

minimum 



• Example: 

2 6
6 20

, trace 𝐴 = 22 = 𝜆1+𝜆2, det 𝐴 = 4 = 𝜆1𝜆2 

 

 𝑥1 𝑥2  
2 6
6 20

𝑥1
𝑥2

= 2𝑥1
2 + 12𝑥1𝑥2 + 20𝑥2

2 

 𝑓 𝑥1, 𝑥1 = 2𝑥1
2 + 12𝑥1𝑥2 + 20𝑥2

2 = 2 𝑥1 + 3𝑥2
2 + 2𝑥2

2. 

 

 

 

 

 

 

 A horizontal intersection could be 𝑓 𝑥1, 𝑥1 = 1. It is an ellipse. 

 Its quadratic form is 2 𝑥1 + 3𝑥2
2 + 2𝑥2

2 = 1. 

 

 

 

 

 

 

 

 

 

• For the positive definite case we have 

» First derivatives are zero 

» Matrix of second derivatives is positive 

Graph of quadratic form 

𝑥1 

𝑥2 

minimum 



Graph of quadratic form 

• Example: 

2 6
6 20

, trace 𝐴 = 22 = 𝜆1+𝜆2, det 𝐴 = 4 = 𝜆1𝜆2 

 

  𝑓 𝑥1, 𝑥1 = 2𝑥1
2 + 12𝑥1𝑥2 + 20𝑥2

2 = 𝟐 𝑥1 + 𝟑𝑥2
2 + 𝟐𝑥2

2 

 Note that computing the square form is effectively elimination 

𝐴 =
2 6
6 20 2 −3(1)

𝟐 6
0 𝟐

= 𝑢 and 𝐿 =
1 0
𝟑 1

 

 The pivots and the multipliers appear in the quadratic form when we compute 

the square. 

 Pivots are the square multipliers so positive pivots imply sum of squares and 

hence positive definiteness. 

 



Graph of quadratic form 

• Example: Consider the matrix 𝐴 =
2 −1 0
−1 2 −1
0 −1 2

 

 The leading (“north west”) determinants are 2,3,4. 

 The pivots are 2, 3/2, 4/3. 

 The quadratic form is 𝒙𝑇𝐴 𝒙 = 2𝑥1
2 + 2𝑥2

2 + 2𝑥3
2 − 2𝑥1𝑥2 − 2𝑥2𝑥3. 

 The eigenvalues of 𝐴 are 𝜆1 = 2 − 2, 𝜆2 = 2, 𝜆3 = 2 + 2 

 The matrix 𝐴 is positive definite when 𝒙𝑇𝐴 𝒙 > 0. 

 

 

 

 



• The 𝑛 × 𝑛 Fourier matrix is defined as: 

 

 

 

 

 

 
 

• In this matrix we will number the first row and column with 0. 

• We define 𝑤 = 𝑒−𝑖
2𝜋

𝑛 . For 𝑤 is preferable to use polar representation. 

• 𝐹𝑛 𝑖, 𝑗 = 𝑤𝑖𝑗. 

• We must stress out that it is better to use the notation 𝑤𝑛 instead of 𝑤. 

• I have avoided this notation to make things look simpler. 

 

 

 

The Discrete Fourier Transform (DFT) matrix 



• The parameter 𝑤 = 𝑒−𝑖
2𝜋

𝑛  lies on the unit circle shown below. The case depicted 

below refers to 𝑛 = 8 where the points 𝑤𝑚 = 𝑒−𝑖
2𝜋𝑚

8 , 𝑚 = 0,… , 7  of the second 

row (row 1) of the Fourier matrix are shown. 

 

 

 

 

 

 

 

 

• We must stress out that the Fourier matrix is totally constructed out of 

numbers of the form 𝑤𝑛
𝑘. 

 

 

The Discrete Fourier Transform (DFT) matrix cont. 



The Discrete Fourier Transform (DFT) matrix for 𝑛 = 4 

• The parameter 𝑤4 = 𝑒
−𝑖
2𝜋

4 = 𝑒−𝑖
𝜋

2 = cos
𝜋

2
− 𝑖 sin

𝜋

2
= −𝑖. 

• The quantities inside Fourier matrix are 1, 𝑖, 𝑖2, 𝑖3, 𝑖4, 𝑖6, 𝑖9. 
 

𝐹4 =

1 1
1 −𝑖

1 1
𝑖2 −𝑖3

1 𝑖2

1 −𝑖3
𝑖4 𝑖6

𝑖6 −𝑖9

=

1 1
1 −𝑖

1 1
−1 𝑖

1 −1
1 𝑖

1 −1
−1 −𝑖

 

 

• The columns of this matrix are orthogonal.  

• Remember that the inner product of 2 complex vectors is 𝑦∗𝑇𝑥 = 𝑦𝐻𝑥. 

 

 

 



The Discrete Fourier Transform (DFT) matrix for 𝑛 = 4 cont. 

• I can show that the columns are orthogonal but they are not orthonormal. 

• I can fix this by dividing the Fourier matrix with the length of the rows (columns). 

In this case it is 2. Therefore, I can write: 
 

𝐹4 =
1

2

1 1
1 −𝑖

1 1
𝑖2 −𝑖3

1 𝑖2

1 −𝑖3
𝑖4 𝑖6

𝑖6 −𝑖9

=
1

2

1 1
1 −𝑖

1 1
−1 𝑖

1 −1
1 𝑖

1 −1
−1 −𝑖

 

 

• We can easily show that 𝐹4
𝐻𝐹4 = 𝐼. 

 

 

 



The Fast Fourier Transform (FFT) 

• It can be proven that there is a connection between 𝐹2𝑛 and 𝐹𝑛. 

• This is expected from the fact that 𝑤2𝑛
2 = 𝑤𝑛. It can be shown that: 

 

𝐹2𝑛 =
𝐼𝑛 𝐷𝑛
𝐼𝑛 −𝐷𝑛

𝐹𝑛 𝚶𝑛
𝚶𝑛 𝐹𝑛

1
0
0

0
0
0

0
1
0

0 0 ⋯
0 0 ⋯
0 1 …

⋮ ⋮ ⋮ ⋮ ⋮ ⋮
0
0
⋮

1
0
⋮

0
0
⋮

0
1
⋮

0
0
⋮

⋯
⋯
⋮

 

 

• When 𝐹2𝑛  is multiplied by a column vector in order to obtain the Fourier 

Transform of the signal, we require (2𝑛)2 multiplications. 

• When 𝐹2𝑛  is decomposed as above,  𝑃2𝑛 does not contribute to multiplications, 
𝐹𝑛 𝚶𝑛
𝚶𝑛 𝐹𝑛

 requires 2 × (𝑛)2 multiplications and  
𝐼𝑛 𝐷𝑛
𝐼𝑛 −𝐷𝑛

 requires 

𝑛 multiplications. 

• In total 2 × (𝑛)2+𝑛 < (2𝑛)2. 

 

permutation 

matrix 𝑃2𝑛 

diagonal 

matrix 𝐷𝑛 



The Fast Fourier Transform (FFT) cont. 

• In the previous analysis the matrix 𝐷𝑛 is defined as:  
 

 

 

 

 

 

 

• We start requiring (2𝑛)2 multiplications and manage to reduce them to 2 × (𝑛)2+𝑛 

multiplications. 

 

 

 

 

 

 

 



The Fast Fourier Transform (FFT) cont. 

• The next step is to break the 𝐹𝑛 down. We use the above idea recursively. 

 

𝐹2𝑛  =
𝐼𝑛 𝐷𝑛
𝐼𝑛 −𝐷𝑛

𝐹𝑛 𝚶𝑛
𝚶𝑛 𝐹𝑛

𝑃2𝑛 =

=
𝐼𝑛 𝐷𝑛
𝐼𝑛 −𝐷𝑛

𝐼𝑛/2 𝐷𝑛/2
𝐼𝑛/2 −𝐷𝑛/2

𝚶𝑛

𝚶𝑛
𝐼𝑛/2 𝐷𝑛/2
𝐼𝑛/2 −𝐷𝑛/2

𝐹𝑛/2 𝚶𝑛/2
𝚶𝑛/2 𝐹𝑛/2

𝚶𝑛

𝚶𝑛
𝐹𝑛/2 𝚶𝑛/2
𝚶𝑛/2 𝐹𝑛/2

𝑃𝑛 𝚶𝑛
𝚶𝑛 𝑃𝑛

𝑃2𝑛 

• We started with (2𝑛)2 multiplications and manage to reduce them to 2 × (𝑛)2+𝑛 

multiplication. 

• Now the 𝑛2 multiplications are reduced to 2 × (𝑛/2)2+𝑛/2 multiplications. 

 



The Fast Fourier Transform (FFT) cont. 

• We can carry on this recursive procedure until we reach 1 × 1 Fourier matrices. 

• We will have a large number of matrices piling up. 

• It can be proven that if we start with a matrix of size 𝑛 × 𝑛 the total number of 

multiplications is reduced to  
1

2
𝑛log2(𝑛) 

• Consider 𝑛 = 1024 = 210. In that case 𝑛2 > 1,000,000. 

•
1

2
1024log2 1024 = 5 × 1024. 

• We reduced the multiplications from 1024 × 1024 to 5 × 1024, i.e., by a factor of 

200. 

• The Fast Fourier Transform is one of the most important algorithms in 

modern scientific computing. 

 

 


