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Mathematics for Signals and Systems

In this set of lectures we will talk about:

• Spaces other than vector spaces.

• Orthogonal subspaces.

• Projections on to spaces.

• How to solve the problem 𝐴𝑥 = 𝑏 when 𝑏 does not belong in the column space of 

𝐴.

• Lease Squares Minimization or Linear Regression.



Mathematics for Signals and Systems

Generalization of the concept of space

• Consider a set of entities (objects) that are not necessarily 1 − 𝐷 vectors.

• Assume that multiplication with a scalar and addition can be defined for these  

entities.

• A new space can be defined from all linear combinations of such entities.

Example: Space of matrices

• Consider a space 𝑀 which contains all 3 × 3 matrices.

• Addition and multiplication with a scalar can be applied to matrices, e.g., if 𝐴 and 

𝐵 are matrices, then 𝐴 + 𝐵 and 𝑐𝐴 are matrices too.

• Examples of subspaces of 𝑀:

 All upper triangular matrices.

 All lower triangular matrices.

 All symmetric matrices.

 All diagonal matrices.



Mathematics for Signals and Systems-Space of Matrices

• Consider the space 𝑀 of all 3 × 3 matrices.

 The dimension of this space is 9, i.e., dim 𝑀 = 9.

 The simplest basis of this space is:

1 0 0
0 0 0
0 0 0

0 1 0
0 0 0
0 0 0

0 0 1
0 0 0
0 0 0

…
0 0 0
0 0 0
0 0 1

 Any 3 × 3 matrix can be written as a linear combination of the above matrices.

• Consider the subspace 𝑆 of all 3 × 3 symmetric matrices. (Keep in mind that 

symmetry implies square matrices only).

 The dimension of this subspace is 6, i.e., dim 𝑆 = 6.

 The simplest basis of this subspace is:

1 0 0
0 0 0
0 0 0

0 1 0
1 0 0
0 0 0

0 0 1
0 0 0
1 0 0

0 0 0
0 1 0
0 0 0

0 0 0
0 0 1
0 1 0

0 0 0
0 0 0
0 0 1

 Any 3 × 3 symmetric matrix can be written as a linear combination of the 

above matrices.



Space of Matrices cont.

• Consider the subspace 𝑈 of all 3 × 3 upper triangular matrices.

 The dimension of this subspace is 6, i.e., dim 𝑈 = 6.

 The simplest basis of this subspace is:

1 0 0
0 0 0
0 0 0

0 1 0
0 0 0
0 0 0

0 0 1
0 0 0
0 0 0

0 0 0
0 1 0
0 0 0

0 0 0
0 0 1
0 0 0

0 0 0
0 0 0
0 0 1

• Consider the subspace of the intersection of symmetric and upper triangular 

matrices 𝑆 ∩ 𝑈. This subspace consists of diagonal matrices.

 The dimension of this subspace is 3, i.e., dim 𝑆 ∩ 𝑈 = 3.

 A basis is:

1 0 0
0 0 0
0 0 0

0 0 0
0 1 0
0 0 0

0 0 0
0 0 0
0 0 1

• Note that the union 𝐒 ∪ 𝐔 is not a subspace.



Space of Matrices cont.

• As mentioned the union 𝑆 ∪ 𝑈 is not a subspace.

• Lets consider 𝑆 + 𝑈.

Question:

What matrices can I get from 𝑆 + 𝑈 where both 𝑆 and 𝑈 are of dimension 𝑛 × 𝑛?

Answer:

I can basically get any 𝑛 × 𝑛 matrix. Can you possibly prove why?

• We notice that for 𝑛 = 3 we have:

dim 𝑆 + 𝑈 = 9
dim 𝑆 = 6
dim 𝑈 = 6

• In general we can prove that:

dim 𝑆 + dim 𝑈 = dim 𝑆 + 𝑈 + dim(𝑆 ∩ 𝑈)



Rank One Matrices

• An example of a 2 × 3 matrix of rank equal to 1 is:

𝐴 =
1 4 5
2 8 10

• A basis of the row space of the above matrix is the vector 1 4 5 .

• A basis of the column space of the above matrix is the vector 
1
2

.

• Note that the well known property holds dim𝐶(𝐴) = 𝑟 = dim𝐶(𝐴𝑇).

• In this example 𝑟 = 1.  



Rank One Matrices cont.

• We can write the previous matrix 𝐴 as:

𝐴 =
1 4 5
2 8 10

=
1
2

1 4 5 . 

• Every rank one matrix can be decomposed into the product of a column vector 

and a row vector 𝐴 = 𝑣 𝑤𝑇, with 𝑣 and 𝑤 column vectors.

• Furthermore, if 𝑣 and 𝑤 are column vectors, the matrix 𝑣 𝑤𝑇 is always of rank 1.

• All matrices can be written as a combination of rank one matrices.

• Rank one matrices are the building blocks for all matrices!



Orthogonal subspaces: Definition and a couple of questions

• Suppose that a subspace 𝑆 is orthogonal to a subspace 𝑇. What does this 

mean? It actually means that every vector in 𝑆 is orthogonal to every vector in 𝑇.

• Assume we are in 𝑅3. Consider two 2-D planes which are perpendicular to each 

other (for example a wall and the floor). Are these planes orthogonal?
(The answer is NO: the line which is their intersection belongs to both) 

• Assume we are in 𝑅2.

1. When is a line through the origin orthogonal to the entire plane?

2. When is a line through the origin orthogonal to the 0 subspace?

3. When is a line through the origin orthogonal to another line through the origin?
(answers: 1. never, 2. always, 3. when they form a 𝟗𝟎𝒐 angle)



Orthogonal subspaces: more questions

• The row and null space of a matrix 𝐴 of size 𝑚 × 𝑛 are orthogonal. Why?

Vectors which satisfy 𝐴𝑥 = 𝟎 are orthogonal to all rows of 𝐴.

• Assume we are in 𝑅3: consider two orthogonal lines. Could their subspaces be the 

row space and the null space of a matrix?
(The answer is NO: dim𝑪 𝑨𝑻 +dim𝑵 𝑨 = 𝒓 + 𝟑 − 𝒓 = 𝟑) 

• Row space and null space are orthogonal and furthermore:

 Their dimensions add up to the size of rows (or number of columns). This is 

basically the size of the maximum space that the rows can form.

 Row space and null space are orthogonal complements in 𝑅𝑛.



Solve a system when there is no exact solution

• “Solve” 𝐴𝑥 = 𝑏 when there is no exact solution, i.e., 𝑏 ∉ 𝐶 𝐴 .

• We will realize, in subsequent sections, that there is a matrix which will play an 

important role for the solution to this problem: This is 𝐴𝑇𝐴. It has the following 

properties:

 It is square of size 𝑛 × 𝑛 (𝐴 is of size 𝑚 × 𝑛).

 It is symmetric because 𝐴𝑇𝐴 𝑇 = 𝐴𝑇(𝐴𝑇)𝑇= 𝐴𝑇𝐴.

 It is invertible if 𝐴 has 𝑛 independent columns, i.e., the null space of 𝐴 is zero 

(proof follows later).

Example 1: 𝐴 =
1 1
1
1

2
5

. Show that 𝐴𝑇𝐴 is invertible.

Example 2: 𝐴 =
1 3
1
1

3
3

. Show that 𝐴𝑇𝐴 is NOT invertible.



Projection matrix 

PROBLEM: Find the projection of a vector 𝑏 onto a line 𝑎. We need this to solve the 

problem 𝐴𝑥 = 𝑏, 𝑏 ∉ 𝐶 𝐴 . (All vectors are assumed column vectors.)

• This is a point 𝑝 on the straight line formed by vector 𝑎, such that 𝑝 = 𝑥𝑎, where 𝑥 is 

a scalar.

• 𝑝 is defined such as the vector 𝑒 = 𝑏 − 𝑝 is orthogonal to the line formed by vector 𝑎.

• Inner product 𝑎𝑇𝑒 = 𝑎𝑇 𝑏 − 𝑝 = 𝑎𝑇 𝑏 − 𝑥𝑎 = 0 or 𝑥 =
𝑎𝑇𝑏

𝑎𝑇𝑎
.

• Based on the above 𝑝 =
𝑎𝑇𝑏

𝑎𝑇𝑎
𝑎 =

𝑎𝑎𝑇

𝑎𝑇𝑎
𝑏 = 𝑃𝑏 with 𝑃 =

𝑎𝑎𝑇

𝑎𝑇𝑎
(observe the form of 𝑷).

• Note that 𝑎𝑇𝑎 is a scalar and 𝑎𝑎𝑇 is a square matrix.

• 𝑃 is called the projection matrix.



Projection matrix properties

• What is the column space of 𝑷?

It is the subspace formed by vector 𝑎. The reason is that if 𝑎 = 𝑎1 𝑎2 𝑇 then 

𝑃 =
1

𝑎 2

𝑎1
2 𝑎1𝑎2

𝑎1𝑎2 𝑎2
2 and therefore, 𝐶 𝑃 : 𝑐1

𝑎1
2

𝑎1𝑎2
+ 𝑐2

𝑎1𝑎2
𝑎2

2 = (

)

𝑐1𝑎1 +

𝑐2𝑎2
𝑎1
𝑎2

= 𝑐
𝑎1
𝑎2

.

• What is the rank of 𝑷?

Obviously 1.

• What happens if I do the projection twice?

Nothing should happen. Therefore, the condition 𝑃2 = 𝑃 must hold. Verify this 

using the above 2 × 2 matrix.

• If we double 𝒃 what happens to the projection?

The projection is doubled too.

• If we double 𝒂 what happens to the projection?

Nothing should happen to the projection in that case.



Solving Ax=b using projections

• Consider again the scenario where the system 𝐴𝑥 = 𝑏 doesn’t have solution.

• Goal: Solve 𝐴ො𝑥 = 𝑝 instead, where 𝑝 is the projection of 𝑏 onto the column 

space of 𝐴.

• As already mentioned, the projection 𝑝 of 𝑏 onto the column space of 𝐴 is found 

by forcing the error 𝑒 = 𝑏 − 𝑝 to be perpendicular to the column space of 𝐴.

• This scenario is depicted in the figure below for 𝑅3.

• The quantities shown are column vectors and 𝐴 = 𝑎1 𝑎2 .



• The error 𝑒 is perpendicular to 𝑎1 and 𝑎2.

𝑎1
𝑇 𝑏 − 𝐴ො𝑥 = 0 and 𝑎2

𝑇 𝑏 − 𝐴ො𝑥 = 0

𝑎1
𝑇

𝑎2
𝑇 𝑏 − 𝐴ො𝑥 = 𝟎 ⇒ 𝐴𝑇 𝑏 − 𝐴ො𝑥 = 𝟎

Question:

Consider 𝐴𝑇 𝑏 − 𝐴ො𝑥 = 𝟎.

In which subspace does 𝑒 = 𝑏 − 𝐴ො𝑥 belong?

Answer:

Since 𝐴𝑇 𝑏 − 𝐴ො𝑥 = 𝟎, we observe that 𝑒 ∈ 𝑁(𝐴𝑇) (left nullspace). Therefore 𝑒 is 

perpendicular to the column space of 𝐴.

 Solution of the “new” system: 𝐴𝑇𝐴ො𝑥 = 𝐴𝑇 𝑏

 If 𝐴𝑇𝐴 is invertible then: ො𝑥 = 𝐴𝑇𝐴 −1𝐴𝑇𝑏

 Projection: 𝑝 = 𝐴ො𝑥 = 𝐴 𝐴𝑇𝐴 −1 𝐴𝑇𝑏 = 𝑃𝑏

 Projection matrix: 𝑃 = 𝐴 𝐴𝑇𝐴 −1𝐴𝑇

Projection error, solution and projection matrix



Projection matrix

• Projection matrix: 𝑃 = 𝐴 𝐴𝑇𝐴 −1𝐴𝑇

• In general, 𝐴 is not square (it is rectangular) and therefore, we cannot use the 

property 𝐴𝑇𝐴 −1 = 𝐴−1 𝐴𝑇 −1.

Question:

If 𝐴 was a square and invertible matrix of size 𝑛 × 𝑛 what would 𝑃 be?

Answer:

In that case the column space of 𝐴 would be the entire 𝑅𝑛 and therefore the 

vector 𝑏 would belong to 𝐶(𝐴). Therefore, the projection of any vector 𝑏 on 𝐶(𝐴)
would be the vector itself. This can be also verified by:

𝑃 = 𝐴 𝐴𝑇𝐴 −1𝐴𝑇 = 𝐴𝐴−1 𝐴𝑇 −1𝐴𝑇 = 𝐼 ∙ 𝐼 = 𝐼



Projection matrix: Properties

• Properties of 𝑃.

 Symmetric

𝐴𝑇𝐴 symmetric and therefore 𝐴𝑇𝐴 −1 is symmetric

[to prove this we use the property 𝐴−1 𝑇 = 𝐴𝑇 −1]

𝑃𝑇 = 𝐴 𝐴𝑇𝐴 −1𝐴𝑇 𝑇 = 𝐴𝑇 𝑇 𝐴𝑇𝐴 −1 𝑇𝐴𝑇 = 𝐴 𝐴𝑇𝐴 −1𝐴𝑇 = 𝑃

 𝑃2 = 𝑃

𝑃2 = 𝐴 𝐴𝑇𝐴 −1𝐴𝑇𝐴 𝐴𝑇𝐴 −1𝐴𝑇 = 𝐴 𝐴𝑇𝐴 −1[𝐴𝑇𝐴 𝐴𝑇𝐴 −1]𝐴𝑇 =

= 𝐴 𝐴𝑇𝐴 −1𝐼𝐴𝑇 = 𝐴 𝐴𝑇𝐴 −1𝐴𝑇 = 𝑃



Problem:

Show that the proposed approach 𝐴ො𝑥 = 𝑝 yields the solution which can be also 

obtained if we look for an ො𝑥 that minimizes the function:

𝐴ො𝑥 − 𝑏 2 = 𝑒 2

Solution:

We are looking to minimize the function 𝐴ො𝑥 − 𝑏 2 = 𝑒 2 = 𝐴ො𝑥 − 𝑏 𝑇(𝐴ො𝑥 − 𝑏). 
This is a function of ො𝑥 only and therefore, we can formulate the problem:

min𝑓 ො𝑥 = min[ 𝐴ො𝑥 − 𝑏 𝑇 𝐴ො𝑥 − 𝑏 ]

A function is minimized at points for which its first derivative is zero. Therefore, we 

are looking for the ො𝑥s that satisfy the equation:
𝜕𝑓(ො𝑥)

𝜕 ො𝑥
= 𝟎 ⇒

𝜕

𝜕ො𝑥
𝐴ො𝑥 − 𝑏 𝑇 𝐴ො𝑥 − 𝑏 = 𝟎

𝐴ො𝑥 − 𝑏 𝑇 𝐴ො𝑥 − 𝑏 = 𝐴ො𝑥 𝑇 − 𝑏𝑇 𝐴ො𝑥 − 𝑏 = ො𝑥𝑇𝐴𝑇 − 𝑏𝑇 𝐴ො𝑥 − 𝑏

= ො𝑥𝑇𝐴𝑇𝐴ො𝑥 − ො𝑥𝑇𝐴𝑇𝑏 − 𝑏𝑇 𝐴ො𝑥 + 𝑏𝑇𝑏
𝜕

𝜕 ො𝑥
( ො𝑥𝑇𝐴𝑇𝐴ො𝑥 − ො𝑥𝑇𝐴𝑇𝑏 − 𝑏𝑇 𝐴ො𝑥 + 𝑏𝑇𝑏) = 2𝐴𝑇𝐴ො𝑥 − 𝐴𝑇𝑏 −𝐴𝑇 𝑏 + 𝟎 = 2𝐴𝑇𝐴ො𝑥 − 2𝐴𝑇𝑏

Therefore, the derivative is zero if 𝐴𝑇𝐴ො𝑥 = 𝐴𝑇𝑏. This is equal to the previous 

solution. This approach is called Least Squares Minimization.

Least Squares Minimization


