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Definition of Markov matrices and their properties 
 

• Consider a matrix 𝐴 with the following properties: 

 All entries are ≥ 0 

 The elements of each column add up to 1. 

• This is called a Markov matrix. 

• An example is 

𝐴 =
0.1 0.01 0.3
0.2 0.99 0.3
0.7 0 04

 

• When I square the matrix the above properties are still valid! 

• The powers of the matrix are all Markov matrices. 

• I am interested in the eigenvalues and eigenvectors of a Markov matrix. 
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Markov matrices and their eigenvalues 
 

• 𝜆 = 1 is always an eigenvalue of a Markov matrix. 

• The rest of the eigenvalues have magnitude 𝜆𝑖 < 1. 

• Remember the system described by an equation of the form 𝑢𝑘 = 𝐴
𝑘𝑢0. 

• We managed to write 𝑢𝑘 = 𝐴
𝑘𝑢0 = 𝑐1𝜆1

𝑘𝑥1 + 𝑐2𝜆2
𝑘𝑥2 +⋯ where 𝜆𝑖 and 

𝑥𝑖 are the eigenvalues and eigenvectors of matrix 𝐴 respectively. 

• Note that the above relationship requires a complete set of 

eigenvectors. 

• If 𝜆1 = 1 and 𝜆𝑖 < 1, 𝑖 > 1 then the steady state of the system is 

𝑐1𝑥1 (which is part of the initial condition 𝑢0). 

• Furthermore, the components of 𝑥1 are positive or zero, i.e., the steady 

state is positive. 
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Markov matrices and their eigenvalues 
 

• I would like to prove that  𝜆 = 1 is always an eigenvalue of a Markov 

matrix. 

• Consider again the Markov matrix 𝐴. 

• Since the elements of each column of 𝐴 add up to 1, the elements of 

each column of 𝐴 − 𝐼 should add up to zero. 

• Therefore, the rows of 𝐴 − 𝐼 should add up to zero. 

• Therefore, matrix 𝐴 − 𝐼 is singular, which yields 𝑑𝑒𝑡 𝐴 − 𝐼 = 0. 

• From the above analysis, it is shown that 𝜆 = 1 is always an eigenvalue 

of a Markov matrix. 

• Since 𝐴 − 𝐼 is singular there is a vector 𝑥 for which 

𝐴 − 𝐼 𝑥 = 0 ⇒ 𝐴𝑥 = 𝑥 

• A vector of the null space of 𝐴 − 𝐼 is the eigenvector of 𝐴 that 

corresponds to eigenvalue 𝜆 = 1. 
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Application of Markov matrices 
 

• Consider again the system described by an equation of the form 

𝑢𝑘 = 𝐴
𝑘𝑢0, where 𝐴 is now a Markov matrix. 

• I will use an example where 𝐴 is a 2 × 2 matrix. Generally, an 𝑛 × 𝑛 

Markov matrix is related to 𝑛 “states”. This is a concept that we will 

develop shortly. 

• Assume that 𝐴 is a 2 × 2 matrix, and the 2 “states” are 2 UK cities. 

• I take London and Oxford. I am interested in the population of the two 

cities and how it evolves. 

• I assume that people who inhabit these two cities move between them 

only. 

•
𝑢ox
𝑢lon 𝑡=𝑘+1

=
0.9 0.2
0.1 0.8

 
𝑢ox
𝑢lon 𝑡=𝑘

 

• It is now obvious that the column elements are positive and also add up 

to 1 because they represent probabilities. 
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Application of Markov matrices (cont.) 
 

• I assume that 
𝑢ox
𝑢lon 𝑡=𝑘=0

=
0

1000
 

•
𝑢ox
𝑢lon 𝑘=1

=
0.9 0.2
0.1 0.8

0
1000

=
200
800

 

• Question: What is the population of the two cities after a long time? 

• Consider the matrix 
0.9 0.2
0.1 0.8

. The eigenvalues are 𝜆1 = 1 and 

𝜆2 = 0.7. 

(Notice that the second eigenvalue is found by the trace of the matrix.) 

• The eigenvectors of this matrix are 𝑥1 =
2
1

 and 𝑥2 =
−1
1

  

•
𝑢ox
𝑢lon 𝑘

= 𝑐1𝜆1
𝑘 2
1
+ 𝑐2𝜆2

𝑘 −1
1
= 𝑐1

2
1
+ 𝑐20.7

𝑘 −1
1
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Application of Markov matrices (cont.) 
 

• I find 𝑐1, 𝑐2 from the initial condition 
𝑢ox
𝑢lon 𝑡=𝑘=0

=
0

1000
  

0
1000

=𝑐1
2
1
+ 𝑐2

−1
1

 and therefore, 𝑐1 =
1000

3
 and 𝑐2 =

2000

3
 

 

• Markov models facilitate the modeling of various real life engineering 

applications. 

 

• An example is the modeling of the movement of people without gain or 

loss: total number of people is conserved! 
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Expansion with orthonormal basis 
 

• Consider a set of orthonormal vectors 𝑞1, … , 𝑞𝑛 which form a basis of the 

𝑛 −th dimensional space. 

• Every vector 𝑣 can be written as 𝑣 = 𝑥1𝑞1 +⋯+ 𝑥𝑛𝑞𝑛. 

• The problem is to find 𝑥𝑖 , for every 𝑖. 

• The inner product 𝑞1
𝑇 ∙ 𝑣 is given by 

𝑞1
𝑇 ∙ 𝑣= 𝑞1

𝑇 ∙ 𝑥1𝑞1 +⋯+ 𝑥𝑛𝑞𝑛 = 𝑥1 

• The matrix 𝑄 contains the column vectors 𝑞𝑖 , 𝑖 = 1,… , 𝑛. 

𝑄𝑥 = 𝑣 ⇒ 𝑥 = 𝑄−1𝑣 with 𝑄−1 = 𝑄𝑇 
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Fourier Series 
 

• The goal is to write a function 𝑓(𝑥) as follows: 

𝑓 𝑥 = 𝑎0 + 𝑎1 cos 𝑥 + 𝑏1 sin 𝑥 + 𝑎2 cos 2𝑥 + 𝑏2 sin 2𝑥 +⋯ 

• The cosine and sine signals are orthogonal signals. 

• The difference of the above relationship to the previous one with vectors, 

is that this is infinite. 

• The above relationship is the so called Fourier Series expansion. 

• For the first time the vectors are replaced by functions. 

• Orthogonal vectors 𝑣,𝑤 imply that 𝑣𝑇𝑤 = 𝑣1𝑤1 +⋯+ 𝑣𝑛𝑤𝑛 = 0. 

• Orthogonal continuous functions 𝑓 and 𝑔 imply that 

𝑓𝑇𝑔 =  𝑓 𝑥 𝑔 𝑥 𝑑𝑥 

• In the case of Fourier Series above I have 𝑓𝑇𝑔 =  𝑓 𝑥 𝑔 𝑥 𝑑𝑥
2𝜋

0
. 

• Problem: Find 𝑎0, 𝑎𝑖 , 𝑏𝑖 

 

 

 

 

 

 


