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Positive definite matrices cont. 

 

• If a matrix 𝐴 is positive-definite, its inverse 𝐴−1 it also positive definite. This 

comes from the fact that the eigenvalues of the inverse of a matrix are equal to 

the inverses of the eigenvalues of the original matrix. 

 

• If matrices 𝐴 and 𝐵 are positive definite, then their sum is positive definite. This 

comes from the fact 𝑥𝑇 𝐴 + 𝐵 𝑥 = 𝑥𝑇𝐴𝑥 +𝑥𝑇 𝐵𝑥 > 0. The same comment holds 

for positive semi-definiteness. 

 

• Consider the matrix 𝐴 of size 𝑚 × 𝑛 (rectangular, not square). In that case we are 

interested in the matrix 𝐴𝑇𝐴 which is square. 

 

• Is 𝐴𝑇𝐴 positive definite? 

 

 

 



Positive definite matrices 

 

• Is 𝐴𝑇𝐴 positive definite? 

 

• 𝑥𝑇𝐴𝑇𝐴𝑥 = (𝐴𝑥)𝑇𝐴𝑥 = 𝐴𝑥 2 

 

• In order for 𝐴𝑥 2 > 0 for every 𝑥 ≠ 0, the null space of 𝐴 must be zero. 

 

• In case of 𝐴 being a rectangular matrix of size 𝑚 × 𝑛 with 𝑚 > 𝑛, the rank of 𝐴 

must be 𝑛. 

 

 

 



Similar matrices 

• Consider two square matrices 𝐴 and 𝐵. 

• Suppose that for some invertible matrix 𝑀 the relationship 𝐵 = 𝑀−1𝐴𝑀 holds. In 

that case we say that 𝐴 and 𝐵 are similar matrices. 

• Example: Consider a matrix 𝐴 which has a full set of eigenvectors. In that case 

𝑆−1𝐴𝑆 = Λ. Based on the above 𝐴 is similar to Λ. 

• Similar matrices have the same eigenvalues. 

• Matrices with identical eigenvalues are not necessarily similar. 

• There are different families of matrices with the same eigenvalues. 

• Consider the matrix 𝐴 with eigenvalues 𝜆 and corresponding eigenvectors 𝑥 and 

the matrix 𝐵 = 𝑀−1𝐴𝑀 . 

We have 𝐴𝑥 = 𝜆𝑥 ⇒ 𝐴𝑀𝑀−1𝑥 = 𝜆𝑥 ⇒ 𝑀−1𝐴𝑀𝑀−1𝑥 = 𝜆𝑀−1𝑥 

𝐵𝑀−1𝑥 = 𝜆𝑀−1𝑥 

Therefore, 𝜆 is also an eigenvalue of 𝐵 with corresponding eigenvector 𝑀−1𝑥. 

 

 

 

 



Matrices with identical eigenvalues with some repeated 

• Consider the families of matrices with repeated eigenvalues. 

• Example: Lets take the 2 × 2 size matrices with eigenvalues 𝜆1 = 𝜆2 = 4. 

 The following two matrices  

4 0
0 4

= 4𝐼 and 
4 1
0 4

 

have eigenvalues 4,4 but they belong to different families. 

 There are two families of matrices with eigenvalues 4,4.  

 The matrix 
4 0
0 4

 has no “relatives”. The only matrix similar to it, is itself. 

 The big family includes 
4 1
0 4

 and any matrix of the form 
4 𝑎
0 4

, 𝑎 ≠ 0. These 

matrices are not diagonalizable since they only have one non-zero 

eigenvector. 

 

 

 



Matrices with identical eigenvalues with some repeated 

• Lets find more matrices of the family of 
4 1
0 4

. 

• Any matrix with trace 8 and determinant 16 belongs to that family. 

• Examples are 
5 1
−1 3

 and 
4 0
17 4

. 

• Similar matrices with repeated eigenvalues have identical eigenvalues and same 

number of independent eigenvectors. The reverse is not true. 



Singular Value Decomposition (SVD) 

• In linear algebra, the Singular Value Decomposition (SVD) is a factorization of 

any real or complex matrix 𝐴 of dimension 𝑚 × 𝑛 as 𝐴 = 𝑈Σ𝑉𝑇 

• It has many useful applications in signal processing and statistics. 

 𝑈 is a unitary matrix with columns 𝑢, of dimension 𝑚 ×𝑚.  

 Σ is an 𝑚 × 𝑛 rectangular diagonal matrix with non-negative real numbers on 

the diagonal. 

 𝑉 is a unitary matrix with columns 𝑣, of dimension 𝑛 × 𝑛. 

• 𝑈 is in general different to 𝑉. 

• When 𝐴 is a square invertible matrix then 𝐴 = 𝑆Λ𝑆−1. 

• When 𝐴 is a symmetric matrix, the eigenvectors of 𝑆 are orthogonal, so 

𝐴 = 𝑄Λ𝑄𝑇. 

• Therefore, for symmetric matrices SVD is effectively an eigenvector 

decomposition 𝑈 = 𝑄 = 𝑉 and Λ = Σ . 

 

 

 



Singular Value Decomposition (SVD) 

• With SVD an orthogonal basis in the row space, which is given by the columns 

of 𝑣, is mapped by matrix 𝐴 to an orthogonal basis in the column space given by 

the columns of 𝑢. This comes from 𝐴𝑉 = 𝑈Σ. 

𝑅𝑛 

𝑁(𝐴)  

𝑅𝑚 

𝑁(𝐴𝑇)  

Row Space Column Space 𝑣1 𝜎1𝑢1 = 𝐴 𝑣1 

𝑣2 
𝜎2𝑢2 = 𝐴 𝑣2 



Singular Value Decomposition (SVD) 

• In matrix form the mapping between the row and column space that the SVD 

achieves can be written as: 𝐴 𝑣1 … 𝑣𝑟 = 𝑢1 … 𝑢𝑟

𝜎1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝜎𝑟

 or 

𝐴𝑉 = 𝑈Σ. 

• So the goal is to find an orthonormal basis (𝑉) of the row space and an 

orthonormal basis (𝑈) of the column space that diagonalize the matrix 𝐴 to Σ. 

• In the generic case the basis of 𝑉 would be different to the basis of 𝑈. 

• Note that if 𝐴 is singular, the null space of 𝐴 is not empty. Then the SVD is written 

as: 𝐴 𝑣1 … 𝑣𝑟    𝑣𝑟+1 … 𝑣𝑛 = 𝑢1 … 𝑢𝑟    𝑢𝑟+1 … 𝑢𝑚

𝜎1 …
⋮ 𝜎𝑟

    
0 0
0 0

0 0
0 0

        
0 0
0 0

 

 

 



Singular Value Decomposition (SVD) 

• The following relationships hold: 

𝐴𝑉 = 𝑈Σ  

𝐴 = 𝑈Σ𝑉−1 = 𝑈Σ𝑉𝑇 

• The matrix 𝐴𝑇𝐴 is therefore 

 𝐴𝑇𝐴 = 𝑉Σ𝑈𝑇𝑈Σ𝑉𝑇 = 𝑉Σ2𝑉𝑇 with 

Σ =
𝜎1
2 … 0
⋮ ⋱ ⋮
0 … 𝜎𝑛

2
 

• Therefore, the above expression is the eigenvector decomposition of 𝐴𝑇𝐴. 

• Similarly, the eigenvector decomposition of 𝐴𝐴𝑇 is: 

𝐴𝐴𝑇  = 𝑈Σ𝑉𝑇𝑉Σ𝑈𝑇 = 𝑈Σ2𝑈𝑇 

• So we can determine all the factors of SVD by the eigenvalue decompositions of 

matrices  𝐴𝑇𝐴  and 𝐴𝐴𝑇. 



Singular Value Decomposition (SVD) 

• Example: 𝐴 =
4 4
−3 3

 and 𝐴𝑇𝐴 =
4 −3
4 3

4 4
−3 3

=
25 7
7 25

 

• The eigenvalues of 𝐴𝑇𝐴 are 32 and 18. 

• The eigenvectors of 𝐴𝑇𝐴 are 𝑣1 =

1
2 

− 1
2 

  and  𝑣2 =

1
2 

1
2 

 and 

𝐴𝑇𝐴 = 𝑉Σ2𝑉𝑇 

• Similarly 𝐴𝐴𝑇 =
4 4
−3 3

4 −3
4 3

=
32 0
0 18

 

• Therefore, the eigenvectors of  𝐴𝐴𝑇are  𝑢1 =
1
0

  and  𝑢2 =
0
1

 and 𝐴𝐴𝑇  =

𝑈Σ2𝑈𝑇 . 

• Note that: 𝑒𝑖𝑔 𝐴𝐵 = 𝑒𝑖𝑔(𝐵𝐴) 
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• Therefore, the SVD of 𝐴 =
4 4
−3 3

 is: 

𝐴 = 𝑈Σ𝑉𝑇 =  
1 0
0 1

 32 0

0 18

1
2

 1
2

 

−1
2

 1
2

 
=

4 4
−3 3

 

 

 

 

 

 

 

 

 

 

 



Singular Value Decomposition (SVD) 

 

• Example:  The matrix 𝐴 is singular 𝐴 =
4 3
8 6

 

 

 

 

 

 

 

 

• The eigenvalues of 𝐴𝑇𝐴 =
4 8
3 6

4 3
8 6

=
80 60
60 45

 are 0 and 125. 

𝐴 = 𝑈 Σ 𝑉𝑇 =  

1
5

 2
5

 

2
5

 −1
5

 
 125 0

0 0

0.8 0.6
0.6 −0.8

=
4 3
8 6

 

 

 

 

 

 

 

 

 

 

 

row space 

multiples of 
4
3
or

0.8
0.6

 

column space 

multiples of 
4
8

 or 

1
5 

2
5 

  𝑛(𝐴) 𝑛(𝐴𝑇) 

𝐶(𝐴) 𝐶(𝐴𝑇) 

  

null space of 𝐴 

multiples of 
0.6
−0.8

 

null space of 𝐴𝑇   

multiples of 

2
5 

− 1
5 

 



Singular Value Decomposition (SVD) 

• Orthonormal basis for row space: 𝑣1 … 𝑣𝑟 

 

• Orthonormal basis for column space: 𝑢1 … 𝑢𝑟    

 

• Orthonormal basis for null space: 𝑣𝑟+1 … 𝑣𝑛 

 

• Orthonormal basis for null space of 𝐴𝑇:  𝑢𝑟+1 … 𝑢𝑛  

 

These bases make matrix 𝐴 diagonal 𝐴𝑣𝑖 = 𝜎𝑖𝑢𝑖 

 

 

 

 

 

 

 

 


