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Consider a matrix A with the following properties:
» All entries are positive and real.

» The elements of each column or each row or both each column and each row
add up to 1.

» Based on the above a matrix that exhibits the above properties will have all
entries < 1.

> Itis square.
This is called a stochastic matrix.

Stochastic matrices are also called Markov, probability, transition, or
substitution matrices.

The entries of a stochastic matrix usually represent a probability.

Stochastic matrices are widely used in probability theory, statistics, mathematical
finance and linear algebra, as well as computer science and population genetics.
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Stochastic matrices. Types.

There are several types of stochastic matrices:

= Aright stochastic matrix is a matrix of nonnegative real entries, with each row’s
elements summing to 1.

= Aleft stochastic matrix is a matrix of nonnegative real entries, with each
column’s elements summing to 1.

= Adoubly stochastic matrix is a matrix of nonnegative real entries with each
row's and each column’s elements summing to 1.

A stochastic matrix often describes a so called Markov chain X; over a finite state
space S.

Generally, an n X n stochastic matrix is related to n “states”.

If the probability of moving from state i to state j in one time step is P.(j /i) = [p;;],
the stochastic matrix P is given by using p;; as the it" row and j™ column element:

(P11 P12 - DPin
p = P:21 P?Z p?n
| Pn1 Pn2 -+ Pnn.

Depending on the particular problem the above matrix can be formulated in such a
way so that is either right or left stochastic.
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An example of a left stochastic matrix is the following:

0.1 0.01 0.3
A=1(02 099 03
0.7 O 04

You can prove that if A and B are stochastic matrices of any type then AB is also
a stochastic matrix of the same type.

Consider two left stochastic matrices A and B with elements a;; and b;;
respectively, and C = AB with elements c;;.

Let us find the sum of the elements of the j™ column of C:

n - n n — n n — n n — . —_—
i=1Cij = Qi1 Lk=1Qikbrj = Dk=12i=1 Cirbrj = Dg=1bkj Liz1@ix =1-1=1

Based on the above the power of a stochastic matrix is a stochastic matrix.
| am interested in the eigenvalues and eigenvectors of a stochastic matrix.

Let’s call a vector with real, nonnegative entries p,, for which all the p;, add up to
1, a stochastic vector. For a stochastic matrix, every column or row or both is a
stochastic vector.
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| would like to prove that A = 1 is always an eigenvalue of a stochastic matrix.
Consider again a left stochastic matrix A.

Since the elements of each column of A add up to 1, the elements of each row of
AT should add up to 1. Therefore

-

Therefore, 1 is an eigenvalue of AT : The eigenvalues of AT are obtained through
the equation det(A” — A1) = 0. But:

det(AT — AI) = det(AT — AIT) = det[(4 — A)T] = det(4 — AI)
Hence, the eigenvalues of 4 and AT are the same, which implies that 1 is also an
eigenvalue of A.

Since det(4 — I) = 0, the matrix A — I is singular, which means that there is a
vector x for which

A—-Dx=0>=>Ax =x
A vector of the null space of A — I is the eigenvector of A that corresponds to
eigenvalue A = 1.
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| would like now to prove that the eigenvalues of a stochastic matrix have
magnitude smaller or equal to 1.

R
Uy

Assume that v = IS an eigenvector of a stochastic matrix A with an

v

eigenvalue [A]| > 1. r‘i'_hen A"y = A"v implies Z}‘:l[A”]ijvj = A"y

A™ has exponentially growing length for n --» co. The maximum value that
?:1[An]i jv;j can take is v,y - max Z}l:l[A"]i i < Vmax * 1 Since the entries of A™

are<1.

The relationship Y7_,[A"];jv; = A"v; must be valid for any n. There is always a

minimum n for which Z}‘:l[A"]ijvj < Vpax' 1 < A if 1] > 1.

Based on the above, the assumption of an eigenvalue being larger than 1 can not
be valid.
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Consider again the system described by an equation of the form u;,, = A*u,,
where A is now a stochastic matrix.

Previously, we managed to write u, = A¥u, = c;4,%x; + c;1,x, + --- where 4;
and x; are the eigenvalues and eigenvectors of matrix A, respectively.

Note that the above relationship requires a complete set of eigenvectors.

If A, =1 and [4;]| < 1,i > 1 then the steady state of the system is c;x; (which is
part of the initial condition u).

| will use an example where A is a 2 x 2 matrix. Generally, an n X n stochastic
matrix is related to n “states”. Assume that the 2 “states” are 2 UK cities.

| take London and Oxford. | am interested in the population of the two cities and
how it evolves.

| assume that people who inhabit these two cities move between them only.
uox] _ 0.9 0.2] luox]
Wonli—g+1 0.1 0.81 Wonli—y

It is now obvious that the column elements are positive and also add up to 1
because they represent probabilities.
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* lassume that liiilt=k=o = [1oooo]'The” [IZZi]kzl = 8:2 8:?;] [10000] = [?;88 '

Problem:
What is the population of the two cities after a long time?

Solution:

09 0.2
0.1 0.8
(Notice that the second eigenvalue is found by the trace of the matrix.)

Consider the matrix ] The eigenvalues are 4;, =1 and 1, = 0.7.

The eigenvectors of this matrix are x; = m and x, = [_11]

;L‘Zi]k =al m el l_11] =G m + ¢,0.7" l_11]

. - [ el B u
| find ¢;, ¢, from the initial condition [uloxl _ llooool
onli——o

l10000] =¢; m + ¢ [_11] and therefore, ¢; = —>and ¢, = =>
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Stochastic models facilitate the modeling of various real life engineering
applications.

An example is the modeling of the movement of people without gain or loss: total
number of people is conserved.



