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Effect on poles and zeros on frequency response

Consider a generic system transfer function
P(s S—21)(s—2y) ...(s —z
Hisy = P& _ ) = m)(5 = 23) (s — 2w)
Q2(s) (s =A)( —42) . (s = Ay)
The value of the transfer function at some complex frequency s = p is:
_P(p) -z —22) .- (p—2n)
H(p) = == b
0@ - —1)..(p— )
H(p) = P(p) _ . (r1e/91)(r,e/%2) .. (rye/PN) >
PITA®) T 7 (el (dyel%) L (dyel®) 7
The factor p — z is a complex number.
= |tis represented by a vector drawn
from point z to point p in the complex plane.
= Using polar coordinates we can write p — z; = r;e/®i. :
withr; = |p — z;| and ¢; = 2(p — z;)
Same comments are valid for the factor p — A; = d;e’":.
Note that z; and A4; is a pole.
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Effect on poles and zeros on frequency response cont.

The previous form can be further modified as:
(rlej¢1)(rzej¢2) (rNej¢N)

H(p) = b . . .
(p) = bo (d,e191)(d,e%) ... (dyeloN)
= by 2N (14 bt dn)=(O1+05+-+0)
did, ..dy

Therefore, the magnitude and phase

at s = p are given by:
Ty ...Ty

,\qbz

d, ...dy
product of the distances of zeros to p

O product of the distances of poles to p
LH(S)s=p = (1 + P+ -+ py) — (6, + 6, + -+ 6y)
= sum of zeros' angles to p — sum of poles’ angles to p

If b, IS negative, there is an additional phase = since in that case

by = —|bo| = |b0|€jn

L
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Gain enhancement by a single pole

Consider the hypothetical case of a single pole at —a + jw,.

The amplitude response at a specific value of w, |H(jw)|, is found by
measuring the length of the line that connects the pole to the point jw.

If the length of the above mentioned line is d, then |H(jw)| is proportional
1

to —. |
d

K
|H(Gw)| = 7

= As w increases from zero, d decreases progressively
until w reaches the value w,.

= As w increases beyond w,, d increases progressively. o

= Therefore, the peak of |H(jw)| occurs at w,. _.-°': Re —
As a becomes smaller, i.e., as the pole moves closer ~ ~*; / |0
to the imaginary axis the gain enhancement at w, d
becomes more prominent (d becomes very small.) ;\u
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Gain enhancement by a singie pole cont.

In conclusion, we can enhance a gain at a frequency w, by placing a pole

opposite the point jw,.

The closer the pole is to jw,,
the higher is the gain at w,
and furthermore,

the enhancement is

more prominent around wy.

In the extreme case of a =0
(pole on the imaginary axis)
the gain at wg goes to infinity.
Recall that poles must lie

JWg

Jw

Re —

|H( jo)|

-a:

on the left half of the s —plane.
Repeated poles further enhance
the frequency selective effect.
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Gain enhancement by a pair of complex conjugate poles

In a real system, a complex pole at —a + jw, must be accompanied by its
conjugate pole —a — jwy.

The amplitude response at a specific value of w, |[H(jw)|, is found by
measuring the length of the two lines that connect the poles to the point jw.

If the lengths of the above mentioned lines are d, d’' then |H(jw)| = %.
We can see graphically
that the presence

of the conjugate pole

does not affect substantially
the behaviour of the system L
around w,. This is because | /| Re—
as we move around w,, iq [

d’' does not change dramatically. 0 {,',” w —

T
|H( jw)|
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Gain suppression by a pair of complex conjugate zeros

Consider a real system with a pair of complex conjugate zeros at —a + jw,

and —a — jw,.

The amplitude response at a specific value of w, |H(jw)| is again found by
measuring the length of the two lines that connect the zeros to the point jw.
If the lengths of the above mentioned lines are r, r’ then |H(jw)| = Krr'.

In that case,

the minimum of |H(jw)|
OCcCurs at w,.

As a becomes smaller,

l.e., as the zero moves closer
to the imaginary axis,

the gain suppression at w,
becomes more prominent.

In the extreme caseofa=20
(zero on the imaginary axis)
the gain at wy goes to zero.

Im
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Angles formed by the poles —a + jw, and —a — jw, at w = 0 are equal and
opposite.

Their contribution to the phase response is ZH(jw) = —(0; + 6).

As w increases from 0 up, the angle 6, (due to pole —a + jw,), which has a
negative value at w = 0, is reduced in magnitude.

As w increases from 0 up, the angle 6, (due to pole —a — j« IL
which has a positive value at w = 0, increases

In magnitude. 1

As a result, both 64, 9,, LH(jw)

Increase continuously

and approaches a value of /2
as w — oo, P
Therefore, 6, + 6, b L e

0 -y
the sum of the two angles, 0 w— %0
Increases continuously and id

approaches the value of B i e
asS w — 0.
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Similar arguments regarding the phase are applied for a pair of
complex conjugate zeros —a + jwy, and —a — jwy.

LH(jw) = (¢p1 + ¢2)

)
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Lowpass filters. The simplest case.

A lowpass filter is a system with a frequency response that has its
maximum gain at w = 0.

We showed in detail previously that a pole enhances the gain of the
frequency response at frequencies which are within its close
neighbourhood.

Therefore, for a maximum gain at w = 0, we must place pole(s) on the
real axis, within the left half plane, opposite the point w = 0.

The simplest lowpass filter can be described by the transfer function:

H(s) = —= V=1
S+ W,
= Observe that by putting w. to the numerator i o
we achieve H(0) = 1. e
= |f the distance from the pole to a point jw ~o, 0  Re—
is d then |H(jw)| = =£.
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« An ideal lowpass filter has a constant gain of 1 up to a desired frequency
w, and then the gain drops to 0.

« Therefore, for an ideal lowpass filter an enhanced gain is required within
the frequency range 0 to w.. This implies that a pole must be placed
opposite every single frequency within the range 0 to w,.

« We require ideally a continuous “wall of poles” facing the imaginary axis
opposite the range 0 to w, , and consequently, their complex conjugates
facing the imaginary axis opposite the range 0 to —w,. t Jw,

= At this stage we are not interested in investigating the
optimal shape of this wall of poles.
= We can prove that for a maximally flat response
within the range 0 to w., the wall is a semicircle. 0 Re-—
= A maximally flat amplitude response implies:
d'|H(w)|
dw?

=0,i =0,1,2, ..

w=0 t —Jjw,
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We can prove that for a maximally flat response within the range 0 to w,,
the wall is a semicircle with infinite number of poles.

In practice we use N poles and we end up with a filter with non-ideal
characteristics.

Observe the response as a function of N.
This family of filters are called Butterworth filters.
There are families of filters with different characteristics (Chebyshev etc.)

} jw. .
X
o l ]
X N=5 |
.‘Ill’ T
_% |H( jw)|
0 Re — B Q.+ Re
‘X\
Kool —jw,. 0
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An ideal bandpass filter has a constant gain of 1 placed symmetrically
around a desired frequency w,; otherwise the gain drops to 0.

Therefore, we require ideally a continuous wall of poles facing the
Imaginary axis opposite w,, and consequently, their complex conjugates
facing the imaginary axis opposite —w,.

t
Im T

X

; jwg |H(J'w]'|
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An ideal bandstop (notch) filter has 0 amplitude response placed
symmetrically around a desired frequency w,; otherwise the gain is 1.

Realization in theory requires infinite number of zeros and poles.
Let us consider a second order notch filter with zero gain at w,.
* We must have zeros at +jw,.

* For lim |[H(jw)| = 1the number of poles must be equal to the number

w—00

of zeros. (For w — o the distance of all poles and zeros from w is
basically the same.)

= Based on the above two points, we must have two poles.

= In order to have |H(0)| =1 each pole much pair up with a zero and
their distances from the origin must be the same.

» This requirement can be satisfied if we place the two conjugate

poles along a semicircle of radius w, that lies within the left half
plane.
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Based on the previous statements, the pole-zero configuration and the
amplitude response of a bandstop filter are shown in the two figures below.

Observe the behaviour of the amplitude response as a function of 9, the
angle that the pole vector forms with the negative real axis.

f
Im t
s plane :
|H(jw)|
.-""u’.-"-“jmﬂ l ' 0 - 87°
0 Re —

%0 —jwy
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 Design a second-order notch filter to suppress 60Hz hum in a radio
receiver.

« Make wy, = 120n. Place zeros are at s = +jw,, and poles at —w,cosf +
jwysing. We obtain:

(s —jwo)(s + jwy)

H(s) =
() (s + wocosh + jwysind) (s + wycosl — jwysind)
_ s%+wp? _ s%+142122.3
T S2+(2wocos0)s+we?  s2+(753.98c0s0)s+142122.3
, —w? + 142122.3
|H(jw)| =

J(—w? + 142122.3)2+(753.98wc0s6H)2
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« The figures below depict the location of poles and zeros within the plane
and the amplitude response.

f 1
Im
s plane I H( Jw)l
- jag | ek X
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Low-pass Filter

1
|H( jw)| Band-pass Filter
1t -
G, -
§ [ \
0 W) Wy W,y Wy BRal:
t
|H(je)| Band-stop Filter
11
. ~
r
G. |- —
———
0 W, Wy Wy Wy b
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Let us consider a normalised low-pass filter (i.e., one that has a cut-off
frequency at 1) with an amplitude characteristic given by the equation:

H(jw)| =
As n — oo, this gives a ideal LPF response:
* |[H(jw)|=1ifw <1 1}{(}{0}|

* |[Hjw)|=0ifw>1

ideal (n = o)
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In the previous amplitude response we replace w with f and we obtain:

1 J—
Tromn H(H(=s) = 1+G)

|H(jw)I? = Hjw)H" (jw) = Hjw)H(—jw) =

2n 2n
The poles of H(s)H(—s) are given by 1 + G) =0= G) = —1.

We know that —1 = /7(2k~1 and j = e’z.

(E)Zn — —1 = g2n :jZn ) (_1) — e(f%)zn ) ejn(Zk—l) — ejnn ) ejn(Zk—l)
J

. jr(2k—1+n)
= 521 = oJT(2k-14n) o ¢ — ¢ 21, k integer.
Therefore, the poles of H(s)H(—s) lie along the unit circle (a circle around
the origin with radius equal to 1). There are 2n distinct poles given by:

jm(2k—1+n)
s,=e 22 k=12 ..,2n
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We are only interested in H(s), not H(—s). Therefore, we choose the
poles of the low-pass filter to be those lying on the left half plane only.
These poles are:

jm(2k—1+4n)

S, =e 2 = COS%(Zk— 1+n) +jsin%(2k— 1+n),k=12,...,n

The transfer function of the filter is:
H(s) =

1

(s —51)(s = 52) ... (s — SN)

This is a class of filters known as Butterworth filters.
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 To resume, Butterworth filters are a family of filters with poles distributed
evenly around the left half of the unit circle. The poles are given by:

jr(2k+n—-1)
sp,=e 22 k=12 ..,n

« Weassume w, = 1.
« Here are the pole locations for Butterworth filters for orders n = 1 to 4.

1
H(s) =
(s —51)(5s —53) ...(s — sy)
n=1 J‘I:E n=>3 n=4
x =
" | ¥ T4

N S
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Consider a fourth-order Butterworth filter (i.e., n = 4).

The poles are at angles

Therefore, the pole locations are:

5@ 7m 9m 11w

g8’g’g’

8

—0.3827 £ j0.9239, —0.9239 + j0.3827.

Therefore, H(s) = (

1

X

. Y

x‘_ &

1

| w4

—'-x--."

."I’-’

a R ™ %
= WA

n=4

S2+0.76545+1)(s2+1.8478s+1)  s%+2.6131s3+3.4142524+2.6131s+1

[ 51

a2

a3

T

g

ag

1.41421356
2.00000000
2.61312593
3.23606798
3.86370331
4.49395921
5.12583090
D.TH8TT0438
65.39245322

2.00000000
3.41421356
523606798
7.46410162
10.09783468
13.13707118
16.58171874
20.43172909

2.61312593
5.23606798
9.14162017
14.59179389
21.84615007
31.16343748
42.80206107

3.236067T98
7.46410162
14.59179389
25.68835593
41.98638573
6i4.88239627

3.86370331

10.09783468
21.84615097
41.98638573
T74.23342926

4.493958921

1313707118
J1.16343748
64.88239627

5.12583080
16.58171874
42.80206107

575877048

20.43172909 6.39245322



