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Computer-Aided Design of Linear-Phase FIR Filters 

• In this section, we consider the application of computer-aided 

optimization techniques for the design of FIR filters. 

• The basic idea behind the computer-based technique is to minimize 

iteratively an error measure that is function of the difference between the 

desired frequency response 𝐷(𝑒𝑗𝜔) and the frequency response 𝐻(𝑒𝑗𝜔) 
of the filter being designed. 

• In the case of linear-phase FIR filter design, 𝐻(𝑒𝑗𝜔) and 𝐷(𝑒𝑗𝜔) are zero-

phase frequency responses. 

• For IIR filter design, these functions are replaced with their magnitude 

functions. 

 



Previous part 

• The windowing method and the frequency-sampling method are relatively simple 

techniques for designing linear-phase FIR filters. 

• Here, a major problem, is a lack of precise control of the critical frequencies such 

cut-off frequencies of pass band and stop band. 

This part 

• The new filter design method described in this section is formulated as a so called 

Chebyshev approximation problem. 

• It is viewed as an optimum design criterion in the sense that the maximum 

weighted approximation error between the desired frequency response and the 

actual frequency response is minimized. 

• The resulting filter designs have ripples in both the pass-band and the stop-

band. 

• To describe the design procedure, let us recall the following basic filter 

specifications. 
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Computer-Aided Design of Linear-Phase FIR Filters 

• The design objective is to iteratively adjust the filter parameters so that 

the error function defined by the equation: 

𝜀 𝜔 = 𝑊 𝑒𝑗𝜔 𝐻 𝑒𝑗𝜔 − 𝐷 𝑒𝑗𝜔  

is minimum according to some criterion. 

𝑊 𝑒𝑗𝜔  is some user-specified positive weighting function. 

• The following criteria are popular: 

Minimax criterion: 

minimize max
𝜔∈𝑅

𝑊 𝑒𝑗𝜔 𝐻 𝑒𝑗𝜔 − 𝐷 𝑒𝑗𝜔  

Least squares criterion: 

Minimize  𝑊 𝑒𝑗𝜔 𝐻 𝑒𝑗𝜔 − 𝐷 𝑒𝑗𝜔
𝑝

𝑑𝜔
𝜔∈𝑅

 

• 𝑅 is the set of disjoint frequency bands in the range 0 ≤ 𝜔 ≤ 𝜋. In filtering 

applications, 𝑅 is composed of passbands and stopbands. 



Computer-Aided Design of Equiripple Linear-Phase FIR Filters 

• The linear phase filter that is obtained by minimizing the peak absolute 

value of the weighted error 𝜀 given by  

𝜀 = max
𝜔∈𝑅

𝜀 𝜔  

is usually called the equiripple FIR filter, since, after 𝜀 has been 

minimized, the weighted error function 𝜀 𝜔  exhibits an equiripple 

behavior in the frequency range of interest. 

• In this part we outline the weighted-Chebyshev approximation method 

advanced by Parks and McClellan for designing equiripple linear phase 

FIR filters. 

• This method is more commonly known as the Parks-McClellan 

algorithm. 

 

 



Computer-Aided Design of Equiripple Linear-Phase FIR Filters 

• The general form of the frequency response 𝐻 𝑒𝑗𝜔  of a causal linear-
phase FIR filter of length 𝑁 + 1 is given by 

 
𝐻 𝑒𝑗𝜔 = 𝑒−𝑗𝑁𝜔/2𝑒𝑗𝛽𝐻 𝜔  

where 𝐻 𝜔  is the amplitude response of 𝐻 𝑒𝑗𝜔   and is a real function of 
𝜔. 

• The weighted error function in this case involves the amplitude response 
and is given by 

𝜀 𝜔 = 𝑊 𝜔 𝐻 𝜔 − 𝐷 𝜔  

 

 

 

• The Parks-McClellan algorithm is based on iteratively adjusting the 
coefficients of the amplitude response until the peak absolute value of 
𝜀 𝜔  is minimized. 

 

 

 

 

 

 

A positive weighting 
function 

The desired 
amplitude response 



Computer-Aided Design of Equiripple Linear-Phase FIR Filters 

• If the minimum value of the peak absolute value of 𝜀 𝜔  in a band 

𝜔𝑎 ≤ 𝜔 ≤ 𝜔𝑏 is 𝜀0, then the absolute error satisfies 

𝐻 𝜔 − 𝐷 𝜔 ≤
𝜀0

𝑊 𝜔
, 𝜔𝑎 ≤ 𝜔 ≤ 𝜔𝑏 

• In typical filter design applications, the desired amplitude response is 

given by  

𝐷 𝜔 =  
 1,    in the passband
 0,    in the stopband

 

• The amplitude response 𝐻 𝜔  is required to satisfy the above desired 

response with a ripple of ±𝛿𝑝 in the passband and a ripple 𝛿𝑠 in the 

stopband. 

• As a result, it is evident from the weighted error function that the 

weighting function can be chosen either as  

𝑊 𝜔 =  
 1,         in the passband
 𝛿𝑝/𝛿𝑠,   in the stopband

  or 𝑊 𝜔 =  
 𝛿𝑠/𝛿𝑝,   in the passband

 1,            in the stopband
 

 

 

 



Linear-Phase FIR Transfer Functions 

• It is nearly impossible to design a linear-phase IIR transfer function. 

• It is always possible to design an FIR transfer function with an exact linear-phase 

response. 

• Consider a causal FIR transfer function 𝐻(𝑧) of length 𝑁 + 1, i.e., of order 𝑁 as 

follows: 

𝐻 𝑧 =  ℎ 𝑛 𝑧−𝑛

𝑁

𝑛=0

 

• The above transfer function has a linear phase, if its impulse response ℎ 𝑛  is 

either symmetric, i.e., 

ℎ[𝑛] = ℎ[𝑁 − 𝑛], 0 ≤ 𝑛 ≤ 𝑁 

 or is antisymmetric, i.e., 

ℎ[𝑛] = −ℎ[𝑁 − 𝑛], 0 ≤ 𝑛 ≤ 𝑁 

• Since the length of the impulse response can be either even or odd, we can define 

four types of linear-phase FIR transfer functions. 

• For an antisymmetric FIR filter of odd length, i.e., 𝑁 even 

ℎ[𝑁/2] = 0  



 

 

Type 2: 𝑁 = 7 Type 1: 𝑁 = 8 

Type 3: 𝑁 = 8 Type 4: 𝑁 = 7 

4 Types of Linear-Phase FIR Transfer Functions 



• By a clever manipulation, the expression for the amplitude response for 

each of the four types of linear-phase FIR filters can be expressed in the 

same form. 

• The same algorithm can be adapted to design any one of the four types of 

filters. 

• To develop this general form for the amplitude response expression, we 

consider each of the four types of filters separately. 

• For the Type 1 linear-phase FIR filter, the amplitude response can be 

rewritten using the notation 𝑁 = 2𝑀 in the form 

𝐻 𝜔 =  𝑎 𝑘 cos 𝜔𝑘

𝑀

𝑘=0

 

𝑎 0 = ℎ 𝑀 ,    𝑎 𝑘 = 2ℎ 𝑀 − 𝑘 ,    1 ≤ 𝑘 ≤ 𝑀 

 

 

 

4 Types of Linear-Phase FIR Transfer Functions 

Amplitude Response of Type 1 



• For the Type 2 linear-phase FIR filter, the amplitude response can be rewritten 

using the notation 𝑁 = 2𝑀 in the form 

𝐻 𝜔 =  𝑏 𝑘 cos 𝜔 𝑘 −
1

2

2𝑀+1 /2

𝑘=1

 

𝑏 𝑘 = 2ℎ
2𝑀 + 1

2
− 𝑘 ,   1 ≤ 𝑘 ≤

2𝑀 + 1

2
 

 

• The above can also be expressed in the form: 

𝐻 𝜔 = cos
𝜔

2
 𝑏 𝑘 cos 𝜔𝑘

2𝑀−1 /2

𝑘=1

 

where 

𝑏 1 =
1

2
𝑏 1 + 2𝑏 0  

𝑏 𝑘 =
1

2
𝑏 𝑘 + 𝑏 𝑘 − 1 ,   2 ≤ 𝑘 ≤

2𝑀 − 1

2
 

𝑏
2𝑀 + 1

2
=

1

2
𝑏 

2𝑀 − 1

2
 

 

4 Types of Linear-Phase FIR Transfer Functions 

Amplitude Response of Type 2 



• For the Type 3 linear-phase FIR filter, the amplitude response can be rewritten 

using the notation 𝑁 = 2𝑀 in the form 

𝐻 𝜔 =  𝑐 𝑘 sin 𝜔𝑘

𝑀

𝑘=1

 

𝑐 𝑘 = 2ℎ 𝑀 − 𝑘 ,   1 ≤ 𝑘 ≤ 𝑀 

 

• The above can also be expressed in the form: 

𝐻 𝜔 = sin(𝜔)  𝑐 𝑘 cos 𝜔𝑘

𝑀−1

𝑘=0

 

where 

𝑐 1 = 𝑐 0 −
1

2
𝑐 1  

𝑐 𝑘 =
1

2
𝑐 𝑘 − 1 − 𝑐 𝑘 ,   2 ≤ 𝑘 ≤ 𝑀 − 1 

c 𝑀 =
1

2
𝑐 𝑀 − 1  

 

4 Types of Linear-Phase FIR Transfer Functions 

Amplitude Response of Type 3 



• For the Type 4 linear-phase FIR filter, the amplitude response can be rewritten 

using the notation 𝑁 = 2𝑀 in the form 

𝐻 𝜔 =  𝑑 𝑘 sin 𝜔 𝑘 −
1

2

2𝑀+1 /2

𝑘=1

 

𝑑 𝑘 = 2ℎ
2𝑀 + 1

2
− 𝑘 ,   1 ≤ 𝑘 ≤

2𝑀 + 1

2
 

 

• The above can also be expressed in the form: 

𝐻 𝜔 = sin
𝜔

2
 𝑑 𝑘 cos 𝜔𝑘

2𝑀−1 /2

𝑘=1

 

where 

𝑑 1 = 𝑑 0 −
1

2
𝑑 1  

𝑑 𝑘 =
1

2
𝑑 𝑘 − 1 − 𝑑 𝑘 ,   2 ≤ 𝑘 ≤

2𝑀 − 1

2
 

𝑑
2𝑀 + 1

2
= 𝑑 

2𝑀 − 1

2
 

 

4 Types of Linear-Phase FIR Transfer Functions 

Amplitude Response of Type 4 



• The amplitude response for all four types of linear-phase FIR filters can be 

expressed in the form 

𝐻 𝜔 = 𝑄 𝜔 𝐴 𝜔  
 

𝑄 𝜔 =

 1,             for Type 1

 cos 𝜔/2 ,  for Type 2

 sin 𝜔 ,       for Type 3

 sin 𝜔/2 ,   for Type 4

 

 

𝐴 𝜔 =  𝑎 𝑘 cos 𝜔𝑘

𝐿

𝑘=0

 

 

𝑎 𝑘 =

 𝑎 𝑘 ,   for Type 1

 𝑏 𝑘 ,   for Type 2

 𝑐 𝑘 ,   for Type 3

 𝑑 𝑘 ,   for Type 4

           𝐿 =

 𝑀,              for Type 1

 
2𝑀 − 1

2
,   for Type 2

 𝑀 − 1,      for Type 3

 
2𝑀 − 1

2
,    for Type 4

 

Amplitude response of linear-phase FIR filters: Generic Form 



Linear-Phase FIR Filter Design by Optimisation 

• The amplitude response for all 4 types of linear-phase FIR filters can be 

expressed as  

𝐻 (𝜔) = 𝑄(𝜔)𝐴(𝜔) 
 

• Before, we gave the weighted error function as 
𝜀 𝜔 = 𝑊 𝜔 𝐻 𝜔 − 𝐷 𝜔  

 

• The modified form of the weighted error function is now 

𝜀(𝜔) = 𝑊(𝜔)[𝑄(𝜔)𝐴(𝜔) − 𝐷(𝜔)] = 𝑊 𝜔 𝑄 𝜔 𝐴 𝜔 −
𝐷 𝜔

𝑄 𝜔
 

= 𝑊 (𝜔)[𝐴(𝜔) − 𝐷 (𝜔)] 

where 

𝑊 (𝜔) = 𝑊(𝜔)𝑄(𝜔) 
𝐷 (𝜔) = 𝐷(𝜔)/𝑄(𝜔) 



• Problem formulation 

Determine 𝑎 [𝑘] which minimise the peak absolute value of 

𝜀 𝜔 = 𝑊 (𝜔)[ 𝑎 [𝑘] cos( 𝜔𝑘)

𝐿

𝑘=0

− 𝐷 (𝜔)] 

over the specified frequency bands 𝜔 ∈ 𝑅. 

• After 𝑎 [𝑘] has been determined, construct the original 𝐴(𝑒𝑗𝜔) and hence 

ℎ 𝑛 . 

• Solution is obtained via the so called Alternation Theorem. 

• The optimal solution has equiripple behavior, consistent with the total 

number of available parameters. 

• Parks and McClellan used the Remez algorithm to develop a procedure 

for designing linear FIR digital filters. 

 

Optimisation Problem 



• Problem formulation 

Determine 𝑎 [𝑘] which minimise the peak absolute value of 

𝜀 𝜔 = 𝑊 (𝜔)[ 𝑎 [𝑘] cos( 𝜔𝑘)

𝐿

𝑘=0

− 𝐷 (𝜔)] 

 

• Parks and McClellan solved the above problem applying the following theorem 

from the theory of Chebyshev approximation. 

 

Alternation Theorem: The amplitude function 𝐴 𝜔  is the best unique 

approximation of the desired amplitude response obtained by minimizing the peak 

absolute value 𝜀 of 𝜀 𝜔 , if and only if there exist at least 𝐿 + 2 extremal angular 

frequencies 𝜔0, 𝜔1,… , 𝜔𝐿+1, in a closed subset 𝑅 of the frequency range 

0 ≤ 𝜔 ≤ 𝜋 such that 𝜔0 < 𝜔1 < ⋯ < 𝜔𝐿 < 𝜔𝐿+1 and 𝜀 𝜔𝑖 = −𝜀 𝜔𝑖+1 , with 

𝜀 𝜔𝑖 = 𝜀 for all 𝑖 in the range 0 ≤ 𝑖 ≤ 𝐿 + 1.  

 

 

 

The Parks-McClellan Algorithm 



• Let us examine the behaviour of the amplitude response for a Type I equiripple 

lowpass FIR filter whose approximation error 𝜀 𝜔  satisfies the condition of the 

alternation theorem. 

• The peaks of 𝜀 𝜔  are at 𝜔 = 𝜔𝑖, 0 ≤ 𝑖 ≤ 𝐿 + 1, where 
𝑑𝜀(𝜔)

𝑑𝜔
= 0 

• Since in the passband and the stopband, 𝑊 𝜔  and 𝐷 𝜔  are piecewise constant, 

we see that 
𝑑𝜀(𝜔)

𝑑𝜔
 
𝜔=𝜔𝑖

= 
𝑑𝐴(𝜔)

𝑑𝜔
 
𝜔=𝜔𝑖

= 0 

or, in other words, the amplitude response 𝐴 𝜔  also has peaks at 𝜔 = 𝜔𝑖. 

• We use the relation cos 𝜔𝑘 = 𝑇𝑘(cos𝜔) where 𝑇𝑘(𝑥) is the 𝑘th order Chebyshev 

polynomial defined by 

𝑇𝑘+1 𝑥 = 2𝑥𝑇𝑘 𝑥 − 𝑇𝑘−1 𝑥 , 𝑇0 𝑥 = 0, 𝑇1 𝑥 = 1 

The amplitude response 𝐴 𝜔  can be expressed as a power series in cos𝜔 

𝐴 𝜔 =  𝑎[𝑘](co𝑠𝜔)𝑘

𝐿

𝑘=0

 

The Parks-McClellan Algorithm 



• Chebyshev polynomials of 1st kind: 

𝑇0 𝑥 = 0 
𝑇1 𝑥 = 1 
𝑇2 𝑥 = 2𝑥2 − 1 
𝑇3 𝑥 = 4𝑥3 − 3𝑥 

𝑇𝑛+1 𝑥 = 2𝑥𝑇𝑛 𝑥 − 𝑇𝑛−1 𝑥   

 

We know that 

co𝑠2𝜔 = 2cos2𝜔 − 1 = 𝑇2 co𝑠𝜔  
co𝑠3𝜔 = 4cos3𝜔 − 3co𝑠𝜔 = 𝑇3(co𝑠𝜔) 
 

It is proven that 

co𝑠𝑘𝜔 = 𝑇𝑘(cos𝜔) 
 

The amplitude response 𝐴 𝜔  can be expressed as a power series in cos𝜔. 

𝐴 𝜔 =  𝑎[𝑘](co𝑠𝜔)𝑘

𝐿

𝑘=0

 

 

 

 

Chebyshev Polynomial Revision 



• The amplitude response 𝐴 𝜔  can be expressed as a power series in cos𝜔 

𝐴 𝜔 =  𝑎[𝑘](co𝑠𝜔)𝑘

𝐿

𝑘=0

 

• It is an 𝐿th order polynomial in co𝑠𝜔. 

• As a result 𝐴 𝜔  can have at most 𝐿 − 1 minima and maxima inside the 

specified passband and stopband. 

• Moreover, at the band edges, 𝜔 = 𝜔𝑝 and 𝜔 = 𝜔𝑠, 𝜀 𝜔  is maximum and 

therefore, 𝐴 𝜔  has extrema in these angular frequencies. 

• In addition 𝐴 𝜔  may also have extrema at 𝜔 = 0 and 𝜔 = 𝜋. 

• Therefore, there are, at most 𝐿 + 3 extremal frequencies of 𝜀 𝜔 . 

• We can generalize and say that in the case of a linear phase FIR filter with 𝐾 

specified band edges and designed using the Remez exchange algorithm, there 

can be at most 𝐿 + 𝐾 + 1 extremal frequencies. 

• To arrive at the optimum solution we need to solve the set of 𝐿 + 2 equations: 

𝑊 𝜔𝑖 [𝐴 𝜔𝑖 − 𝐷 𝜔𝑖 ] = (−1)𝑖𝜀, 0 ≤ 𝑖 ≤ 𝐿 + 1 

for the unknowns 𝑎 𝑖  and 𝜀, provided the 𝐿 + 2 extremal angular frequencies 

are known. 

The Parks-McClellan Algorithm 



• To arrive at the optimum solution we need to solve the set of 𝐿 + 2 equations: 

 

𝑊 𝜔𝑖 [𝐴 𝜔𝑖 − 𝐷 𝜔𝑖 ] = (−1)𝑖𝜀, 0 ≤ 𝑖 ≤ 𝐿 + 1 

for the unknowns 𝑎 𝑖  and 𝜀, provided the 𝐿 + 2 extremal angular frequencies 

are known. 

• The above is rewritten in matrix form as 

1 cos (𝜔0) … cos (𝐿𝜔0)
−1

𝑊 (𝜔0)

1 cos (𝜔1) … cos (𝐿𝜔1)
−1

𝑊 (𝜔1)

⋮ ⋮ ⋱
1 cos (𝜔𝐿) …
1 cos (𝜔𝐿+1) …

⋮
⋮

cos (𝐿𝜔𝐿+1)

⋮
(−1)𝐿−1

𝑊 (𝜔𝐿)

(−1)𝐿−1

𝑊 (𝜔𝐿+1)

𝑎 [0]

𝑎 [1]
⋮

𝑎 [𝐿]
𝜀

=

𝐷 (𝜔0)

𝐷 (𝜔1)
⋮

𝐷 (𝜔𝐿)

𝐷 (𝜔𝐿+1)

 

• The Remez Exchange Algorithm is used to solve the above. 

The Parks-McClellan Algorithm 



• The Remez exchange algorithm, a highly efficient iterative procedure, is used to 

determine the locations of the extremal frequencies and consists of the following 

steps at each iteration stage. 

• Step 1: A set of initial values for the extremal frequencies are either chosen or are 

available from the completion of the previous iteration. 

• Step 2: Solving the system of equations we obtain 

 

𝜀 =
𝑐0𝐷 𝜔0 + 𝑐1𝐷 𝜔1 + ⋯ + 𝑐𝐿+1𝐷 𝜔𝐿+1

𝑐0

𝑊 (𝜔0)
−

𝑐1

𝑊 𝜔1
+ ⋯ +

(−1)𝐿−1𝑐𝐿+1

𝑊 (𝜔𝐿+1)

 

 

𝑐𝑛 =  
1

cos 𝜔𝑛 − cos 𝜔𝑖

𝐿+1

𝑖=0
𝑖≠𝑛

 

The Parks-McClellan Algorithm 



• Step 3: The values of the amplitude response 𝐴(𝜔) at 𝜔 = 𝜔𝑖 are then computed 

using 

𝐴(𝜔𝑖) = 
(−1)𝑖𝜀

𝑊 (𝜔𝑖)
+ 𝐷 (𝜔𝑖), 0 ≤ 𝑖 ≤ 𝐿 + 1 

• Step 4: The polynomial 𝐴(𝜔) is determined by interpolating the above values at 

the 𝐿 + 2 extremal frequencies using the Lagrange interpolation formula: 

𝐴 𝜔 =  𝐴(𝜔𝑖)

𝐿+1

𝑖=0

𝑃𝑖(cos 𝜔) 

where 𝑃𝑖 cos𝜔 =  
cos 𝜔−cos 𝜔𝑙

cos 𝜔𝑖−cos𝜔𝑙

𝐿+1
𝑙=0
𝑙≠𝑖

, 0 ≤ 𝑖 ≤ 𝐿 + 1 

• Step 5: The new weighted error function 𝜀 𝜔  is computed at a dense set 

𝑆(𝑆 ≥ 𝐿) of frequencies. In practice, 𝑆 = 16𝐿 is adequate. Determine the 𝐿 + 2 

new extremal frequencies from the values of 𝜀 𝜔  evaluated at the dense set of 

frequencies.  

• Step 6: If the peak values ε are equal in magnitude, the algorithm has converged. 

Otherwise, we go bask to Step 2. 

 

 

 

The Parks-McClellan Algorithm 



The Parks-McClellan Algorithm 

 

 

 

 

 

 

 

 

 

 

 

• Plots of the desired response 

𝐷 𝜔 , the amplitude response 

𝐴𝑘(𝜔) and the error 𝜀𝑘(𝜔) at the 

end of the 𝑘th iteration. The 

locations of the new extremal 

frequencies are given by 𝜔𝑖
𝑘+1. 

• The iteration process is stopped 

after the difference between the 

value of the peak error 𝜀 

calculated at any stage and that 

at the previous stage is below a 

present threshold value, such as 

10−6. 

• In practice the process 

converges after very few 

iterations. 



• Better than windowing technique, but more complicated.   

• Available in MATLAB. 

• Design 40th order FIR lowpass filter whose gain is unity (0 dB) in range 0 to 0.3 

radians/sample & zero in range 0.4 to . 

• The 41 coefficients will be found in array ‘a’. 

• Produces equiripple gain-responses where peaks of stop-band ripples are equal 

rather than decreasing with increasing frequency. 

• Highest peak in stop-band lower than for FIR filter of same order designed by 

windowing technique to have same cut-off rate. 

• There are equiripple pass-band ripples. 
 

 a = remez (40, [0, 0.3,  0.4,1],[1, 1,  0, 0] ); 

 h = freqz (a,1,1000); 

 plot([0:999]/1000,20*log10(abs(h)),'k'); 

 axis([0,1,-50,0]); 

 grid on; 

 xlabel('Rel_freq / pi'); 

 ylabel('Gain(dB)'); 
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