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x[n] H(z) yin]

Most useful LTI systems can be described by
a difference equation:

ulnl = Y2 blrlan — o] = S alrlyln — ]

& Zf\zo alrjyln —r| = Z:I:O blrlz[n — r] with a[0] =1
& a[n] = y[n] = bln] * x[n]

& Y(z)=ZEX(z)

Jw B(e?¥ jw
<Y (V) = _4((ejw§X(€J )

(1) Always causal.

(2) Order of system is max(M, N), the highest r with a[r] # 0 or b[r] # 0.
(3) We assume that a[0] = 1; if not, divide A(z) and B(z) by a[0].

(4) Filter is BIBO stable iff roots of A(z) all lie within the unit circle,
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A(z) = 1: Finite Impulse Response (FIR) filter: Y (z) = B(z)X (2).
Impulse response is b[n| and is of length M + 1.

Frequency response is B(e¢/¥) and is the DTFT of b[n].
Comprises M complex sinusoids + const:
b[0] + b[1]e ™I 4« 4 b[M]e—IMe

Small M=-response contains only low “quefrencies”

) ey j M w ) 7 )
Symmetrical b[n]=H (¢/“)e”™ 2 consists of % cosine waves [+ const]
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Rule of thumb: Fastest possible transition Aw > 21—1, (marked line) rou re T u
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FIR Symmetries

B(e’) is determined by the zeros of zM B(z) = "M b[AM — r]2"

Real b[n] = conjugate zero pairs: z = z*

o

Symmetric: b[n] = b[M —n] = reciprocal zero pairs: z = 2~

Real + Symmetric bjn] = conjugate+reciprocal groups of four
or else pairs on the real axis

Real: Symmetric: Real + Symmetric:
1, —1.28, 0.64] [1, —1.64 1+ 0.275, 1] [1, —3.28, 4.7625, —3.28, 1]
", =, 0
05 0% 05 0\"-.1_ 05 § 0%
05 o/ 05 / 05 o/
L o T o
_1 "'.._.... - _-1 o e _'1 e L
1 0 1 1 0 1 1 0 1
z z z
3
2 10
) @ 2 )
5
1 1
0 -2 0 2 0 -2 0 2 0 -2 0 2
o (rad/sample)  (rad/sample) o (rad/sample)
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In all of the proofs below, we assume that z = zg is a root of B(z) so that B(zg) = Zﬂi@ blrlzg" =0

and then we prove that this implies that other values of = also satisfy B(z) = 0.

(1) Real b[n]
B(=§) = X7l blr] (25) ™"
— f,"ia b* [r] (zg)_r since b[r] is real
— (Zfio b[r]za?") ) take complex conjugate
= 0% = since B(zp) =0

(2) Symmetric: bln] = b[M — n]

B(zg") = XM br)=5

= Zfzﬂ b[M — ?1]334_" substitute » = M — n
= M Zf:ﬂ b[M —n]zg " take out 2! factor
=M ZnM:{) bln]zg " since b|[M — n] = b[n]

= zg"f x0=0 since B(zg) =0
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. N _ B(z)_ bOITLL, (1—aqiz™")
FaCtO”Z'e H(/«) — ‘4(2)— i\;l(l_piz—l)

Roots of A(z) and B(z) are the “poles” {p;} and “zeros” {¢;} of H(z)
Also an additional N — M zeros at the origin (affect phase only)

6[0]]| == ™[ T |2 —ail
S Jw | — — z
[H () == NI, [=—p:l

for z = ¥

Example:
H(-) — 249.4-—1 B 2(1+1.2271)
(“") T 1-0.962"14+0.642—2 7 (1—(0.48—-0.647)z—1)(1—(0.484+0.647)2—1)
Atw =13 [H(/)| = 1555 55= 5.6
LH(e?Y)=(06+13)— (1.7T4+22) = =2

1 ) 39
10 ’ 1> ™, _ _
B R 0.5 1,62} N-M=2-1=1
T X o | (one zero
5 05 '|| at the origin)
- x
A e

0 . . y
0 1 2 3 -1 0 1 -1 0 1
1.3 (74. 520)/ o x@) x@)
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Negating z

Given a filter H(z) we can form a new one Hr(z) = H(—=2)

_— Pt

Negate all odd powers of z, i.e. negate alternate a[n| and b[n]

_ N 242421
Example: H(2) = 7=g56--11061:=

| D
0.5 10
-0.5
T TT? (10T n)
_1 led] Ué(bu oo
-1 1 % 1 2 3
w
9o 4,1 .
Negate z: Hpr(z) = iTo q—ﬁjiuo =2 Negate odd coefficients
1
0.5 T
E‘r;l}' 0 © T T T w‘P@ 8 65ns
05 l o &
-1
-1 0 1 0

0 1 2 3
R(z) ®

Pole and zero positions are negated, response is flipped and conjugated.
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Negating z cont.

Suppose that Hgr(z) = H(—=). Then Hg(=z) has the following two properties:
Pole and zero positions are negated

If zg is a zero of H(z), then Hr(—2z09) = H(zp) = 0 so —zp is a zero of Hr(z). A similar argumnet
applies to poles.

The frequency response is flipped and conjugated

The frequency response is given by Hg(ed¥) = H(—el¥) = H(e I™ x eI%) = H(eI@—™)) This
corresponds to shifting the frequency reponse by mrad/samp (or, equivalently by —m rad/samp).

If it is true that all the coefficients in a[n| and b[n] are real-valued (normally the case), then the

response of H(z) has conjugate symmetry, ie. H(e %) = H*(el¥). In this case we can write

Hp(ed%) = H(eI@=T)) = H*(eI("=w)) This corresponds to a frequency response that has been
. _ E i - LR - T . T

reflected around w = 3 (a.k.a. “flipped”) and then conjugated. w=g+x,H(e’(7+x_”)) _ (D)

So, the transformation of the frequency can be viewed in one of two ways: (a) it has been shifted by
+mrad/samp or (b) it has been flipped around w = 5 and then conjugated. The first interpretation
is always true (even for filters with complex-valued coefficients) while the second interpretation is more

intuitive but is only true if the filter coefficients are real-valued.
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Given a filter H(z) we can form a new one H¢(z) = H(z?)

Insert two zeros between each a[n] and b[n] term

pole 1 at 45°
949 4.1 corresponds to 3 poles at
. PO 4 22 45° 21 i
Example: H(z) = 1—0.962—140.642—2 = =15°15° + 5° = 135°,15° + °* = 255°
R pole 2 at —45°
05 ¢ x 4//|D /corresponds to 3 poles at

S _ A -150,-15° + X = 105°,—15° + 2T = 225°
N o o T 3 3 3
L= i ]

?T?. ooy
—1 """ dej Uédﬂu s
-1 0 1 o 2 0 2 J;
R(z) o (rad/sample)
519 4.—3

Cube zz He(2) = =5 q%f%iro 51=5 Insert 2 zeros between coefs

0.5 ,- 10

0 o o] P
~ 5

05 }

p ] ,

1 0 1 -2 0 2
z o (rad/sample)

Pole and zero positions are replicated, magnitude response replicated.
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Suppose that He(z) = H(2?). Then He(z) has the following two properties:
Pole and zero positions are replicated three times

If zp is a zero of H(z), then H-(3/z0) = H(zp0) = 0 so any cube root of zp is a zero of Hg(z). A
similar argument applies to poles. Any zg has three cube roots in the complex plane whose magnitudes
all have the same value of {/ |z0| and whose arguments are ¥zg + {0, %ﬁ %ﬁ}

The frequency response is replicated three times

The frequency response is given by Hc(e7%) = H(eI3%). This corresponds to shrinking the response
horizontally by a factor of 3. Also Hx (ej(wi%)) = H (533(“":‘:%)) - H (ej?"'”'iz'”) = Heo (f-.j“")

meaning that there are three replications of the frequency response spaced %T apart. Note that if you
only look at the positive frequencies, there are three replications of the positive half of the reponse but
alternate copies are flipped and conjugated (assuming the coefficients a[n] and b[n] are real-valued).

All of this carries over to raising z to any positive integer power; the number of replications is equal to
the power concerned.

. , .0 2m
Consider z, = re/® and thus, z,1/3 = r1/3¢/%/3, The cube of the points r1/3¢/G*3) and

(2+4_Tt) -
r1/3¢/373) is also equal to z,.
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Given a filter H(z) we can form a new one Hgs(z) = H(i)
MUltiply a.[-n] and b[?]} by a™

) N 2492 4-—1
Example: H(2) = 7=g5g6.-T0.60:=2
L ] —
05 i 1““"—-_
= oo of o I
& i i
05 . _._x’-:
.'|
1 0 1 0 '
%(z) 0 1 " 2 3
) o~ — z _ 2—|—2.Ei4::_1
Scale z: Hg(z) = H(u) — 1—1.0562—140.77442—2
1 e . 20 1
05/ N 15 :
of o o I, ]
] 0 1 D[] 1 2 3
z w (rad/s)

Pole and zero positions are multiplied by o, a > 1 =peaks sharpened.
Pole at z = p gives peak bandwidth = 2 |log |p|| = 2 (1 — [p|)
For pole near unit circle, decrease bandwidth by ~ 2log a
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Suppose that Hg(z) = H (%] where « is a non-zero real number. Then Hg(z) has the following two
properties:

Pole and zero positions are multiplied by «

If 2o is a zero of H(z), then Hg(az, ) = H(zp) = 0 so azg is a zero of Hg(z). The argument of the
zero is unchanged since Zazg = Zzg. The magnitude of the zero is multiplied by . A similar argument
applies to poles. If & > 1 then the pole positions will move closer to the unit circle. If « is large enough
to make any pole cross the unit circle then the filter Hg(z) will be unstable.

The bandwidth of any peaks in the response are decreased by approximately 2log o

If H(z) has a pole, p, that is near the unit circle, it results in a peak in the magnitude response at
w = Zp whose amplitude is proportional to %M and whose bandwidth is approximately equal to
—2log |p| &= 2 (1 — |p|) (which is positive since |p| < 1). The corresponding pole in Hg(z) is at ap, so
its approximate bandwidth is now —2log |ap| = —2log |p| —2log ev. Thus the bandwidth has decreased
by about 2log cr.

If @« > 1 then log« is positive and the peak in Hg(z) will have a higher amplitude and a smaller
bandwidth. If a < 1, then log « is negative and the peak will have a lower amplitude and a larger

bandwidth.



Imperial College

Low-pass filter

1st order low pass filter: extremely common
y[n] — (1 —p) [n] +pu[ n — 1}:> H( ) _1-p

1—pz—1

Impulse response:

h‘[”} = (1- p)p” = (1 — p)e_%

where 7 = —— s the time constant in samples

1—p

Magnitude response: |H el }:
1—2pcosw+p

Low-pass filter with DC gain of unity

3dB frequency is wsgp = cos™! (1 “2; )m 21-

1

Compare continuous time: He(jw) TTior

 —Inp :
. ( ) \/ _‘_-__-__,,1 )
Indistinguishable for low w but H(e¢’*) is periodic, H¢(jw) is not

1

a* = eln(a)-x

o
1 f P=0.80
05 = -10 H(jeo \/\
o) o r \
c 0 ; =2 |
05 B
\ , TT T 30 H.: (jeo) i
-1 TTT?‘F‘?G’GOOHH!W \\
- . : 0.01 1 01 2n

R(z) o (rad/sample)

W

1 The red and blue curves

are the same but in the
<«——blue curve the
logarithmic scale is
depicted in both axes.
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To find the 3dB frequency we require |H (e7¥3)| = \/gf‘:} |H( el®s)|? = % :
(1—p)* _1
1—2pcoswsg+p? ~ 2
= 2(1 —p)% =1—2pcosws + p?
=2(1—p)?=(1—-p)2+2p(1 —cosws)
(1—p)?

w=cos 1(x) =v2-2x

= coswg = 1 —
2

= w3 = cos 1 (1 _ U4-p)” )

Expressing cosw = x as a Taylor series gives ¢ =~ 1 — 5 = w & /2 — 2z. So replacing x by the

. . . 1—p)2 _
expression in parentheses gives w3 =~ (1—p) — 1-p

p VP
Writing d = 1 — p and assuming d is small, we can write \/p = (1 — d.)% ~ 1 — %d = %(l + p).

Substituting this into the previous expression gives w3 &2 : }%}f.
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=
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e
i
s

If H(z) =

with b[n| = a*[M — n] then we have an allpass filter:

=

H(eiw) = Zamo @ M=rle™er _ _jun Sy a” (s
:> (6 ) — Zﬂ'f G,[I‘]E‘_jw?" — € Zﬂ'f G‘.[J"]E_jw""
=0 ‘ —0 )

The two sums are complex conjugates = they have the same magnitude
Hence ‘H(e*’“")| = 1Vw & "allpass”

[s = M — 1]

However phase is not constant: ZH (/%) = —wM — 2LA(e’%)
1
1 11— -p(z—>)
) N —p+z"t  1—ptzmt —zp+ 1 p
st order allpass: H(z) = T, T= P . -
Pole at p and zero at p~!': “reflected in unit circle”
: ia ledw _ ol — |1n] led@ — L],
Constant distance ratio: |e p} = |p| |e 5|V
0
1 L
08 - 1 : osp /
04 1 2 05 |
02 1
0 3 | K
1] 1 2 3 0 1 2 3 -1 0 1
® ® *R(z)

In an allpass filter, the zeros are the poles reflected in the unit circle.
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Alipass filters properties

i((g with b[n] = a*[M — n]. Of course, if the coefficients

a[n] are all real, then the conjugation has no effect and the numerator coefficients are identical to the
numerator coefficients but in reverse order.

An allpass filter is one in which H(z) =

If A(z) has order M, we can express the relation between A(z) and B(z) algebraically as
B(z) = 2= M A(2—1) where the coefficients of A(z) are the conjugates of the coefficients of A(z).

If the roots of A(z) are p;, then we can express H(z) in factorized form as

—p; T2 1 —piz
H(z) = — 2 = —
We can therefore write
M ;. - M . * * ¥ _ %
5 (1 —pfz) (1 —piz*) B 1 —piz™ —piz+ pip] 2=z
HEP = ]] =11

=1 (z—pi) (=* —»}) iy 22T —piz* —piz 4+ pip;

M - * * * * M 1 — ’rg) (— 2)
_ 1—[ (1 N L+ pip;zz" — 2z —p?;p?;) _ H _ (l 2] L — |ps|

1+
e e i * .y ¥ ~ P 2
228 =P = Pzt pip; i—1 |z = pil

1=1
If all the |p;| < 1, then each term in the product is %1 according to whether |z| % 1.

It follows that, provided H(z) is stable, |H(z)] % 1 according to whether |z| % 1.
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Group delay

Group delay: 7y (e’%) = —%&Ew} = delay of the modulation envelope.

Trick to get at phase: In H(e’¥) = In |H(€3’“’)| + jZH(e?%)

o —d(%(lnH(Ej“’)))_ —1 dH(e%)\ . dH
TH = dw =3 (H(e:fw) dw )— R (H(Z)E) i
H(e%) =377 hin]e "= Z(h[n]) [% = DTFT]
% =Y ", —jinh[nle™ "= —j.F (nh[n])
o~ 1 dH(?)\ _ ~ (iF(nhn]) _ ZF (nh[n])
™ =3 (H(e:fw) de )— > ( Z (h[n]) )— R ( Z (h[n]) )
pe—iw
Example: H(z) = 1_;Z_1:> TH = =T —p= — RN (&ﬁ)
0
u; 02f| P0EO g 3\ eo®
§ -u . - 0.4 Ez
08 - 06 <
Y 08 0
1 ‘-‘i{{]z] 1 0 1 . 2 3 0 1 R 2 3

Average group delay (over w) = (# poles — # zeros) within the unit circle
Zeros on the unit circle count —1/2
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Group delay properties

The group delay of a filter H(z) at a frequency w gives the time delay (in samples) of the envelope

: : : PR Jw
of a modulated sine wave at a frequency w. It is defined as 7 (e?%) = —% For example,

H(z) = >—% defines a filter that delays its input by k samples and we can calculate the group delay by
evaluating |
L) 4 (e
dw dw

which tells us that this filter has a constant group delay of k& samples that is independent of w.

 Jw d _
TH(e?Y) = — = L (—kw) =k

The average value of 7y equals the total change in —/H (eJ%) as w goes from —m to +m divided by
27. If you imagine an elastic string connecting a pole or zero to the point z = €%, you can see that
as w goes from —m to + the string will wind once around the pole or zero if it is inside the unit circle
but not if it is outside. Thus, the total change in ZH (e7%¥) is equal to 27 times the the difference
between the number of poles and the number of zeros inside the unit circle. A zero that is exactly on
the unit circle counts % since there is a sudden discontinuity of 7 in ZH (e7¥) as w passes through the
zero position.

When you multiply or divide complex numbers, their phases add or subtract, so it follows that when
you multiply or divide transfer functions their group delays will add or subtract. Thus, for example,

the group delay of an IIR filter, H(z) = %

can determine the group delay of a factorized transfer function by summing the group delays of the
individual factors.

, is given by 7y = 7 — 74. This means too that we
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Group delay properties

A single pole contributes to the transfer function with the term ﬁ. (Pole is assumed real for

simplicity).

The phase of the above term is —tan™?! (L(“’))
cos(w)—p

The negative of the derivative of the phase, i.e., the group delay, is, therefore,

_ar. -1 sin(w) . pcos(w)—1
dw[ tan (cos(a))—p)] - p(2cos(w)—p)—1

https://'www.derivative-calculator.net

The average group delay due to a single pole is given by the integral:
fn 1 pcos(w)-1 {1 |p| <1

-7 2m p2cos(w)-p)-1 (0 [p| <1

T 1 pcos(w)—1 1.
Furthermore, f-nﬁ oS 1~ 2 if |p] = 1

https://www.integral-calculator.com

sin(w)

Similarly, the phase due to a single zero term is —tan™! ( ) and following the above

cos(w)—d
analysis we conclude that the average group delay due to a single zero is —1, 0 or %
Therefore, based on the above we can state:

Average group delay (over w) = (# poles — # zeros) within the unit circle

Zeros on the unit circle count —1/2
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The slide shows how to determine the group delay, 7, from either the impulse response, h[n], or
the transfer function, H(z). We start by using a trick that is very common: if you want to get at
the magnitude and phase of a complex number separately, you can do so by taking its natural log:
In (rejg) = In|r| + j0 or, in general, In H = In|H| + jZH. By rearranging this equation, we get
/H = < (In H) where () denotes taking the imaginary part of a complex number. Using this, we can

write
—d (% (ln H(_ej“*‘))) —d (]n H(_E:j“")) —1 dH(_EjL“')

dw dew H(el¥)  dw

By going back to the definition of the DTFT, we find that H(ej‘*’} — Z(h[n]) and _dHézjw) _

—7.%#(nh[n]) where #() denotes the DTFT. Substituting these expressions into the above equation
gives us a formula for 777 in terms of the impulse response h[n].

w-n ()

In order to express 7y in terms of =, we first note that if = = e/* then %2 = j> By substituting
w

z = eJ¥ into equation (1), we get

of "L dH(2)\ L[ -1 dH(z)dz\ _ ( —jz dH(z)\ _ o dH (=)
TH_"(H(_:) oo )_"(H(_z) - dw)_"(ﬂ(z) dz )‘ (H(:) dz )

z:ejw
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Group delay example

As an example, suppose we want to determine the group delay of : H(z) = —. As noted above,

1l—pz—
if H(z) = BEZ) then 7y = 7B — 74. In thiscase T = 0 so 7y = —T[1 —p]-

=

Using equation (2) gives 7 = —R (%) since nhin] = [0 1] x [1 — p]|.

Applying the definition of the DTFT, we get

1 —pe—7J eJ¥ —p (eIw — -p) (t, J¥ — p) 1—2pcosw + p?

As demonstrated above, the average value of 7 is zero for this filter because there is one pole and one
zero inside the unit circle.

Group delay example without going to the frequency domain

. Considertheterm 22 = 1 — . (Pole is assumed real for simplicity).

A(z) 1-pz7!  z-p’
 The phase of the above term is now w — tan™* (—Sm(“’) )
cos(w)—p

* The negative of the derivative of the phase, i.e., the group delay, is, therefore,
d tan-1 sin(w) B - pcos(w) — 1 B pcos(w) — p?
do |© 75" cos(w) —p/| BT ta = p(2cos(w) —p) —1 1 - 2pcos(w) + p?
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Average group delay (over w) = (# poles — # zeros) within the unit circle

e zeros on the unit circle count -3 )
- 3
Reflecting an interior zero to the exterior 2
. . 179 1
multiplies }H(f?“‘” by a constant but .
increases average group delay by 1 sample. 0 r,2 3
08 o *, \\".
08t —
1 D"Q of ¢ T P fat -10 \.5 1
(L ) ijdﬂ sU] , , ﬁ,
-1 0 1 0 1 2 3
K(z) 0]
1 P olo [
0sf ¥ ‘ ‘
05 1 T ?TLAJ : 19
L"«.,, r_,.?‘}': ,
0 1 )
F(z)

A filter with all zeros inside the unit circle is a minimum phase filter:
e Lowest possible group delay for a given magnitude response
e Energy in h[n| is concentrated towards n =0
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Energy concentration property

This proof is not examinable

Suppose H(z) has a zero inside the unit circle at z = zg so that we can write H(2) = (1 — 2027 1) F(2).
If we flip this zero outside the unit circle, we can write G(z) = (ﬁ, ) F(z
magnitude response as H(z).

Taking inverse z-transforms, we can write the corresponding time domain equations:

hin]| = f[n] — zof[n — 1] and g[n] = fln — 1] — 2§ f[n].

Now, defining f[—1] £ 0, we sum the energy in the first K + 1 samples of the impulse response:

) which has the same

K K
Ejmkwhzijwry—z Ejfm-—mf 1)) (f[k] = zo f[k — 1])*
; —
= |f[K]]? — zof[k — 1f*[k] — 25 f* [k — 1 f[k] + |z0]* | f[k — 1]|?
k=0

o

20 % | FIK]|? — 2o f[k — 1) F*[K] — 2§ F* [k — 1] f[K] + | f[k — 1])°

i
o

K
+ 3 (1= 120) (IF1RI12 = 11k = 1)2)

k=0
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Energy concentration property cont.

So, repeating the previous line,

K
Zlh-[k]F:ZIml FIRI? = 20 fTk — 1177 [K] — 26 £k — 11 £ 1K)+ | £[6 — 1)
k=0
K
+ 3 (1= 1202) (IF1KIZ = 17Tk = 11?)
k=0
K K
= 3" (Flk =10 = 2 £1D) (£l = 1] = 25 FIKD" + (1= 1201?) S° (1FIKI1% = If [k — 1]?)
k=0 k=0

)

lglkll? + (1 = |20/ (IF1KI1? = |- 1))

7=
Il
=)

K
lglk]I + (1= [20]?) 1717 =

)

7=
Il
=)

since |zp| < 1 implies that (l — |zg|2) > 0. Thus flipping a zero from inside the unit circle to outside

never increases the energy in the first K + 1 samples of the impulse response (for any K'). Hence the
minimum phase response is the one with the most energy in the first K + 1 samples for any K.
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Linear phase filters

The phase of a linear phase filter is: ZH(¢7%) = 0y — aw

: Jw
Equivalently constant group delay: 7y = —% =

A filter has linear phase iff h[n| is symmetric or antisymmetric:
hin| = h|M —n] Yn orelse hin] = —h[M —n| Vn

M can be even (= 3 mid point) or odd (= 2 mid point)
Proof «:
2H (el¥) = Zo h [n}f jwmn ZM h[U — n|e—iw(M—n)
=e~/ws Zo hinle™ ieo( )—I—h[ﬂf —n]e-’jw(”_%)

h|n| symmetric:

2H (ei*) = 2e=dw% Zé}j hin]cos (n — &) w

h|n| anti-symmetric:
2H (¢1¥) = —2je %% Zo h[n] sin (n — &) w
= 9e—i(5+w%) Zo hln]sin (n — &) w

‘)

-
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summary

Useful filters have difference equations:

o Freq response determined by pole/zero positions
o N — M zeros at origin (or M — N poles)
o Geometric construction of |H (¢’“)]
> Pole bandwidth ~ 2 |log |p|| = 2 (1 — |p|)
o Stable if poles have |p| < 1

Allpass filter: a[n] = b[M — n]
o Reflecting a zero in unit circle leaves |H (/)| unchanged

. ,:jw
Group delay: 7 (¢7%) = —% samples

o Symmetrical hin] & 7y (/) = S-Vw
o Average Ty over w = (# poles — # zeros) within the unit circle

Minimum phase if zeros have |¢] < 1
o Lowest possible group delay for given |H (%)

Linear phase = Constant group Delay = symmetric/antisymmetric h[n]

For further details see Mitra: 6, 7.



