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DFT Properties

DFT: X[k] = S0 ! a[n]e727%
DTFT: X(e/¥) =37 z[nje—iwn

Case 1: x[n] =0forn ¢ [0, N — 1]
DFT is the same as DTFT at w;, = %’TA

The {w;} are uniformly spaced from w =0 to w = 27 VL.

DFT is the z-Transform evaluated at N equally spaced points
around the unit circle beginning at z = 1.

Case 2: x[n] is periodic with period N
DFT equals the normalized DTFT

X[k = 1i111!\"+oo K (e) Number of samples

) K - — | kept symmetrically
A oIy — , W ..

where X (e?“) = 7 x[n]e around the origin.
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Proof of Case 2

We want to show that if x[n] = x[n + N] (i.e. x[n] is periodic with period N) then
limpg s % X XK (ed¥“r) & limg oo Qf?rﬁ X Zf_{K— r[n]e 1%k = X|[k]

where wj = Qﬁk We assume that x[n] is bounded with |z[n]| < B.

We first note that the summand is periodic:

x[n + N]e_jwk(“"‘N) = 1?[-?1}e_jwk”e_jk21‘\—{rN = 1?[-?1]e_jwk”e_j2ﬁk = x[n]e IWEn,

We now define M and R so that 2K +1 = MN + R where 0 < R < N (i.e. MN s the largest
multiple of N that is < 2K + 1). We can now write (K—R)—(-K)+1=2K+1—R = MN terms

N K iy N e N K 1
skTT X -k clnle” R = grygg TN TR X@'[n]e o

The first sum contains M N consecutive terms of a periodic summand and so efjuals M times the sum

over one period. The second sum contains K bounded terms and so its magnityde is < RB < NB.

_N K —J MN N-1 —; 1 i
S0 gt X Lok wnle TV = gy TR X 2o wln]eT IR 4 P = g | X[k] + P
where |P| < g1 x NB < |z N o x NB= NE.

P| — 0 and lR — 1 so the whole expression tends to X [k]. K-(K-R+1)+1=

S 00, 1+ -E_ | R terms
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Symmetries

If [n] has a special property then X (e/“)and X [k] will have corresponding
properties as shown in the table (and vice versa):

One domain Other domain
Discrete Periodic
Symmetric Symmetric
Antisymmetric Antisymmetric
Real Conjugate Symmetric
Imaginary Conjugate Antisymmetric
Real + Symmetric Real + Symmetric
Real + Antisymmetric | Imaginary 4+ Antisymmetric

Symmetric: x[n] = x[—n] |
X(e¥) = X(e™7v)

Xk = X[(—F) = X[N — k| for k>0

mod N
Conjugate Symmetric: xz[n| = z*[—n)]
Conjugate Antisymmetric: z[n| = —x*[—n]
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Parseval's Theorem

Fourier transforms preserve “energy”

. 2
CTFT f | (t ‘ dt = Z?r f | X ()7 d Hermitian: A complex
ol _ m jwv |2 g, matrix that is equal to
DTFT Z |r[n-]| N E — |X EJ | dew its own conjugate
OFT ) ol = & 5 X ranspose.

More generally, they actually preserve complex inner products:

N—1 | ~N-1 . —
pop * | ——— XIEIY ™k he_ 1oy 1 1,
Do xnJytn] = %> [k]Y > [E] GG =P LF =L FUF
Unitary matrix viewpoint for DFT: =—NF'F=1

It we regard x and X as vectors, then X = Fx where F is
. . - - kﬂ
a symmetric matrix defined by fi 11,01 =€ 727N .

The inverse DFT matrix is F~! = < F/

equivalently, G = \/%F is a unitary matrix with GG = 1.
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DTFT: Convolution — Product
z[n] = g[n] = hin]= > r___ glk]h[n — k]
= X(e/¥) = G(e!¥)H (')

DFT: Circular convolution— Product

r[n] = gln] ®n hln)= S0 0 glkIA[(n = k) pod ]

DTFT: Product— Circular Convolution =27
yln| = g[n|h|n] | | | |
= Y (el¥) = £G(e79) @, H(e??) = & [T G(ed?)H (7“9

DFT: Product— Circular Convolution =N (-2 253€j )

y[n] = g[n|h|n] __
= Y[k] = +G[k] ®x H[K] \ﬁr/
gln] : l—u hin] : L—l gln] = h[n] : [ ‘{ ] g[n] ®3 h[n] JJ
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Time Time Frequency
After convolution with a a o h
Ana |0g lowpass filter the signal Al , Ml CIE).I_

becomes smoother. / W v '.Uu' V il Iy

* 0
Low Pass " ~ — ANNAWA CTFT |

. W —}/' NS > eliminated

Filter y VAR, After sampling i I

/ CTFT (same as DTFT) :

DTFT ERR
Sample X . = nespe I |
becomes periodic. P : gl ke : 1

. DTFT fi | I'r'll |'"'| | |"",
WlndOW X L1 L1 LLISA — m“"l';[l'!ﬂl?«m — o AN AR

A IV VRN
DFT e mulll ‘ [
H il

[>— Filter |—< A/D Converter Window DFT

Lowpass filter the signal in order to make it bandlimited for sampling. Window the signal to make it of finite duration.
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Zero padding means added extra zeros onto the end of x[n| before
performing the DFT.

Time z[n] Frequency | X [£]|
Windowed
gna & I‘T 1]
With zero-
padding

e Zero-padding causes the DFT to evaluate the DTFT at more values
of wy. Denser frequency samples.
e Width of the peaks remains constant: determined by the length and

shape of the window.
e Smoother graph but increased frequency resolution is an illusion.



Imperial College

Phase of a DTFT is only defined to within an integer multiple of 27,

w (rad/sample)

x[n] | X [K]|
OF
T 2 =)
& o
<0 <-20f
=2 B
© -2 o
'l 'l I’ _40
-2 0 2 -2 0 2
w (rad/sample) w (radfsample)

/X k] unwrapped

Phase unwrapping adds multiples of 27

onto each ZX[k| to make the
phase as continuous as possible.
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Uncertainty Principle

1 1
. L ft2|;r(t)|2dt)§ (fw2|X(j;u)|2dw)7 >
CTFT uncertainty principle: ( T4t TTX Geo)[2dw =

b=

The first term measures the "width” of x(t) around ¢ = 0.

It is like o if |2:(t)|* was a zero-mean probability distribution.
The second term is similarly the "width” of X (jw) in frequency.
A signal cannot be concentrated in both time and frequency.

Proof Outline:
Assume f|¢1, )2 dt = 1= X (jw)|? dw = 21 [Parseval]
Set v(t) = X= V(jw) = jwX(jw) [by parts]

Now [trdfdt= Llta? (I‘)|:O_ — [32%dt =0—1 [by parts]

So § = |[ taat]” < ([ %) ([ | %" ) - [Schwara]
= ([ t222dt) (f o (t)[? a’.t): ([ t22dt) (% | IV (jw)|” dw)
= ([ t222dt) (ﬁ [ w? \X(jwﬂzdw)

No exact equivalent for DTFT /DFT but a similar effect is true
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Uncertainty Principie Proof Steps

(1) Suppose v(t) = £%. Then integrating the CTFT definition by parts w.r.t. t gives

X(jQ) = f_mi(t). It = | =La(t)e Jm} + s [0, B it = 0 + LV (i)
(2) Since % (%.’1‘2) ‘fgf we can apply integration by parts to get
Xotedtdt = [t x La?] 7 — [0 4L la?dt=—1 [0 atdi=—Fx1=—3
It follows that ‘ffom tatﬁ—fdt‘g = (—%)2 = 1 which we will use below.

(3) The Cauchy-Schwarz inequality is that in a complex inner product space
2
u - v

<(u-u)(v- V} For the inner-product space of real-valued square-integrable functions
this becomes ‘foo 1 dt‘ < f u?(t)dt x f
and v(t ) = dm(t) to get

- |f_mt dt| ([ t222dt) (f (%)2 d.t) = ([ t222dt) ([ v%(t)dt)

(4) From Parseval's theorem for the CTFT, f’t t}dt QL J1V( (j2* d€2. From step (1), we can
substitute V(jQ) = jQX () to obtain [v2(t)dt = 1 IQQ | X (92|? d©2. Making this substitution
in (3) gives

L < ([ 222dt) (fv2(t)dt) = ([ 222dt) (% [w? [X (5 d.Q.)

2(t)dt. We apply this with u(t) = tx(t)
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Summary

0 Three types: CTFT, DTFT, DFT

— DTFT = CTFT of continuous signal X impulse train
— DFT = DTFT of periodic or finite support signal

» DFT is a scaled unitary transform

0 DTFT: Convolution — Product; Product — Circular Convolution
0 DFT: Product <+ Circular Convolution

0 DFT: Zero Padding — Denser freq sampling but same resolution
0 Phase is only defined to within a multiple of 27.

0 Whenever you integrate over frequency you need a scale factor

— 2% for CTFT and DTFT or % for DFT

— e.g. Inverse transform, Parseval, frequency domain convolution

For further details see Mitra: 3 & 5.



