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Three different Fourier Transforms

There are three useful representations of signals in frequency domain.
- Continuous Time Fourier Transform (CTFT)

▪ Continuous aperiodic signals. Continuous time and continuous frequency.

- Discrete Time Fourier Transform (DTFT)

▪ Discrete aperiodic signals. Discrete time and continuous frequency.

- Discrete Fourier Transform (DFT)

▪ Discrete periodic signals. Discrete Time and discrete frequency.

Forward Transform Inverse Transform

CTFT
𝑋 𝑗Ω = න

−∞

∞

𝑥 𝑡 𝑒−𝑗Ω𝑡𝑑𝑡

Ω: “real” frequency

𝑥 𝑡 =
1

2𝜋
න
−∞

∞

𝑋 𝑗Ω 𝑒𝑗Ω𝑡𝑑Ω

DTFT
𝑋(𝑒𝑗𝜔) = ෍

𝑛=−∞

∞

𝑥[𝑛]𝑒−𝑗𝜔𝑛

𝜔 = Ω𝑇: "normalised" angular frequency

𝑥[𝑛] =
1

2𝜋
න

−𝜋

𝜋

𝑋(𝑒𝑗𝜔)𝑒𝑗𝜔𝑛𝑑𝜔

DFT
𝑋[𝑘] = ෍

𝑛=0

𝑁−1

𝑥[𝑛]𝑒−𝑗2𝜋
𝑘𝑛
𝑁 𝑥[𝑛] =

1

𝑁
෍

𝑛=0

𝑁−1

𝑋[𝑘]𝑒𝑗2𝜋
𝑘𝑛
𝑁



Discrete Time Fourier Transform

• The discrete-time Fourier transform (DTFT) 𝑋 𝑒𝑗𝜔 of a sequence 𝑥[𝑛]

is given by

𝑋(𝑒𝑗𝜔) = ෍

𝑛=−∞

∞

𝑥[𝑛]𝑒−𝑗𝜔𝑛

• In general 𝑋(𝑒𝑗𝜔) is a complex function of the real variable 𝜔 and can be 

written as

𝑋(𝑒𝑗𝜔) = 𝑋re(𝑒
𝑗𝜔) + 𝑗𝑋im(𝑒

𝑗𝜔)

where 𝑋re(𝑒
𝑗𝜔) and 𝑋im(𝑒

𝑗𝜔) are the real and imaginary parts of 𝑋 𝑒𝑗𝜔

and are real functions of 𝜔.

• 𝑋(𝑒𝑗𝜔) can alternatively be expressed as

𝑋(𝑒𝑗𝜔) = 𝑋(𝑒𝑗𝜔) 𝑒𝑗𝜃(𝜔)

where 𝑋(𝑒𝑗𝜔) and 𝜃(𝜔) are the amplitude and phase of 𝑋 𝑒𝑗𝜔 and are 

real functions of 𝜔 as well.



• For a real sequence 𝑥[𝑛], 𝑋(𝑒𝑗𝜔) and 𝑋re(𝑒
𝑗𝜔) are even functions of 𝜔, 

whereas, 𝜃(𝜔) and 𝑋im(𝑒
𝑗𝜔) are odd functions of 𝜔.

• Note that for any integer 𝑘

𝑋 𝑒𝑗𝜔 = 𝑋 𝑒𝑗𝜔 𝑒𝑗[𝜃 𝜔 +2𝜋𝑘] = 𝑋(𝑒𝑗𝜔) 𝑒𝑗𝜃(𝜔)

• The above property indicates that the phase function 𝜃(𝜔) cannot be 
uniquely specified for the DTFT. Recall that the same observation holds 
for the CTFT.

• Unless otherwise stated, we shall assume that the phase function 𝜃(𝜔)
is restricted to the following range of values:

−𝜋 ≤ 𝜃(𝜔) < 𝜋

called the principal value.

Discrete Time Fourier Transform



• The phase response of DTFT might exhibit discontinuities of 2𝜋 radians 

in the plot.

▪ [In numerical computations, when the computed phase function is outside the 

range [−𝜋, 𝜋], the phase is computed modulo 2𝜋 to bring the computed value 

to the above range.]

• An alternate type of phase function that is a continuous function of 𝜔 is 

often used in that case.

• It is derived from the original phase function by removing the 

discontinuities of 2𝜋.

• The process of removing the discontinuities is called phase 

unwrapping.

• Sometimes the continuous phase function generated by unwrapping is 

denoted as 𝜃𝑐(𝜔).

Discrete Time Fourier Transform



• Unlike the Continuous Time Fourier Transform, the DTFT is a periodic 

function in 𝜔 with period 2𝜋.

𝑋 𝑒𝑗 𝜔𝑜+2𝜋𝑘 = σ𝑛=−∞
∞ 𝑥 𝑛 𝑒−𝑗 𝜔𝑜+2𝜋𝑘 𝑛 = σ𝑛=−∞

∞ 𝑥[𝑛]𝑒−𝑗𝜔𝑜𝑛 𝑒−𝑗2𝜋𝑘𝑛 =

σ𝑛=−∞
∞ 𝑥[𝑛]𝑒−𝑗𝜔𝑜𝑛 = 𝑋(𝑒𝑗𝜔𝑜), for any integer 𝑘.

• Therefore, 𝑋(𝑒𝑗𝜔) = σ𝑛=−∞
∞ 𝑥[𝑛]𝑒−𝑗𝜔𝑛 imitates a Fourier Series 

representation of the periodic function 𝑋(𝑒𝑗𝜔).
• As a result, the Fourier Series coefficients 𝑥[𝑛] can be derived from 

𝑋(𝑒𝑗𝜔) using the Fourier integral

𝑥[𝑛] =
1

2𝜋
න

−𝜋

𝜋

𝑋(𝑒𝑗𝜔)𝑒𝑗𝜔𝑛𝑑𝜔

called the Inverse DTFT (IDTFT).

• Periodicity of DTFT is not a new concept; we know from sampling 

theory, that sampling a continuous signal results in a periodic 

repetition of its CTFT.

Discrete Time Fourier Transform Periodicity



• In that case we use the Nyquist sampling rate of 10𝐻𝑧.

• The spectrum ത𝑋 𝜔 consists of back-to-back, non-overlapping

repetitions of
1

𝑇𝑠
𝑋 𝜔 repeating every 10𝐻𝑧.

• In order to recover 𝑋(𝜔) from ത𝑋 𝜔 we must use an ideal lowpass filter

of bandwidth 5𝐻𝑧. This is shown in the right figure below with the dotted

line.

Revision

Nyquist sampling: Just about the correct sampling rate



• Sampling at higher than the Nyquist rate (in this case 20𝐻𝑧 ) makes

reconstruction easier.

• The spectrum ത𝑋 𝜔 consists of non-overlapping repetitions of
1

𝑇𝑠
𝑋 𝜔 ,

repeating every 20𝐻𝑧 with empty bands between successive cycles.

• In order to recover 𝑋(𝜔) from ത𝑋 𝜔 we can use a practical lowpass filter

and not necessarily an ideal one. This is shown in the right figure below

with the dotted line.

• The filter we use for reconstruction must have gain 𝑇𝑠 and bandwidth of

any value between 𝐵 and (𝑓𝑠 − 𝐵)𝐻𝑧.

Revision

Oversampling: What happens if we sample too quickly?



• Sampling at lower than the Nyquist rate (in this case 5𝐻𝑧) makes

reconstruction impossible.

• The spectrum ത𝑋 𝜔 consists of overlapping repetitions of
1

𝑇𝑠
𝑋 𝜔

repeating every 5𝐻𝑧.

• 𝑋(𝜔) is not recoverable from ത𝑋 𝜔 .

• Sampling below the Nyquist rate corrupts the signal. This type of

distortion is called aliasing.

Revision

Undersampling: What happens if we sample too slowly?



• The DTFT is the 𝑧 −transform evaluated at 𝑧 = 𝑒𝑗𝜔.

[Recall that 𝑋 𝑧 = σ−∞
∞ 𝑥[𝑛] 𝑧−𝑛].

Therefore, the DTFT converges if the ROC includes 𝑧 = 1 (𝑧 = 𝑒𝑗𝜔).

• The DTFT is the same as the CTFT of a signal comprising impulses of 

appropriate heights at the sample instances.

𝑥𝛿 𝑡 = σ𝑛 𝑥[𝑛]𝛿(𝑡 − 𝑛𝑇) = 𝑥 𝑡 σ−∞
∞ 𝛿(𝑡 − 𝑛𝑇)

▪ Recall that 𝑥 𝑛 = 𝑥(𝑛𝑇)

𝑋 𝑒𝑗𝜔 = ෍

𝑛=−∞

∞

𝑥 𝑛 𝑒−𝑗𝜔𝑛 = ෍

𝑛=−∞

∞

𝑥[𝑛] න

−∞

∞

𝛿(𝑡 − 𝑛𝑇)𝑒−𝑗𝜔
𝑡
𝑇𝑑𝑡

= ∞−׬
∞
[σ𝑛=−∞

∞ 𝑥 𝑛 𝛿(𝑡 − 𝑛𝑇)]𝑒−𝑗𝜔
𝑡

𝑇𝑑𝑡 = ∞−׬
∞
𝑥𝛿 𝑡 𝑒−𝑗Ω𝑡𝑑𝑡

▪ For the above the condition σ𝑛=−∞
∞ 𝑥 𝑛 < ∞ must hold.

▪ 𝜔 = Ω𝑇

More DTFT Properties



• The DTFT of a shifted discrete Dirac function 𝛿[𝑛 − 𝑘] is given by:

Δ(𝜔) = ෍

𝑛=−∞

∞

𝛿 [𝑛 − 𝑘]𝑒−𝑗𝜔𝑛 = 𝑒−𝑗𝜔𝑘

• The DTFT of the causal sequence 𝑥[𝑛] = 𝛼𝑛𝑢[𝑛], 𝛼 < 1 is given by:

𝑋(𝑒𝑗𝜔) = σ𝑛=−∞
∞ 𝛼𝑛𝑢[𝑛]𝑒−𝑗𝜔𝑛 = σ𝑛=0

∞ 𝛼𝑛𝑒−𝑗𝜔𝑛 = σ𝑛=0
∞ (𝛼𝑒−𝑗𝜔)𝑛 =

1

1−𝛼𝑒−𝑗𝜔

if 𝛼𝑒−𝑗𝜔 = 𝛼 < 1

• For 𝛼 = 0.5, the magnitude and phase of  𝑋(𝑒𝑗𝜔) = 1/(1 − 0.5𝑒−𝑗𝜔) are 

shown below.

Examples



• Lets us prove the previous statement that the IDTFT is defined as:

𝑥[𝑛] =
1

2𝜋
න

−𝜋

𝜋

𝑋(𝑒𝑗𝜔)𝑒𝑗𝜔𝑛𝑑𝜔

Proof

𝑥 𝑛 =
1

2𝜋
න

−𝜋

𝜋

෍

ℓ=−∞

∞

𝑥 ℓ 𝑒−𝑗𝜔ℓ 𝑒𝑗𝜔𝑛𝑑𝜔

= ෍

ℓ=−∞

∞

𝑥[ℓ]
1

2𝜋
න

−𝜋

𝜋

𝑒𝑗𝜔(𝑛−ℓ)𝑑𝜔 = ෍

ℓ=−∞

∞

𝑥[ℓ]
sin 𝜋 (𝑛 − ℓ)

𝜋(𝑛 − ℓ)

(Note that the order of integration and summation can be interchanged if 

the summation inside the top brackets converges uniformly, i.e., if 𝑋(𝑒𝑗𝜔)
exists.)

Inverse Discrete Time Fourier Transform (IDTFT)



𝑥 ℓ
sin 𝜋 𝑛 − ℓ

𝜋 𝑛 − ℓ
= ቊ

1 𝑛 = ℓ
0 𝑛 ≠ ℓ

Hence,

෍

ℓ=−∞

∞

𝑥[ℓ]
sin 𝜋 (𝑛 − ℓ)

𝜋(𝑛 − ℓ)
= ෍

ℓ=−∞

∞

𝑥[ℓ]𝛿[𝑛 − ℓ] = 𝑥[𝑛]

Inverse Discrete Time Fourier Transform cont.



• An infinite series of the form 𝑋(𝑒𝑗𝜔) = σ𝑛=−∞
∞ 𝑥[𝑛]𝑒−𝑗𝜔𝑛 may or may not 

converge.

• Let 𝑋𝐾(𝑒
𝑗𝜔) = σ𝑛=−𝐾

𝐾 𝑥[𝑛]𝑒−𝑗𝜔𝑛

• For uniform convergence (strong convergence) of 𝑋(𝑒𝑗𝜔) we require:

lim
𝐾→∞

𝑋𝐾 𝑒𝑗𝜔 = 𝑋(𝑒𝑗𝜔)

• If 𝑥[𝑛] is an absolutely summable sequence, i.e., if σ𝑛=−∞
∞ 𝑥[𝑛] < ∞, 

then

𝑋(𝑒𝑗𝜔) = ෍

𝑛=−∞

∞

𝑥[𝑛]𝑒−𝑗𝜔𝑛 ≤ ෍

𝑛=−∞

∞

𝑥 𝑛 𝑒−𝑗𝜔𝑛 ≤ ෍

𝑛=−∞

∞

𝑥 𝑛 < ∞

for all values of 𝜔

• Thus, the absolute summability of 𝑥[𝑛] is a sufficient condition for the 

existence of the DTFT 𝑋 𝑒𝑗𝜔 .

Discrete Time Fourier Transform: uniform convergence



• The sequence 𝑥[𝑛] = 𝛼𝑛𝑢[𝑛] is absolutely summable for 𝛼 < 1 since

෍

𝑛=−∞

∞

𝛼𝑛 𝑢[𝑛] = ෍

𝑛=0

∞

𝛼𝑛 =
1

1 − 𝛼
< ∞

and its DTFT converges uniformly to 1/(1 − 𝛼𝑒−𝑗𝜔).

• Note that:

❑ Since σ𝑛=−∞
∞ 𝑥[𝑛] 2 ≤ σ𝑛=−∞

∞ 𝑥[𝑛] 2, an absolutely summable 

sequence has always finite energy.

❑ However, a finite energy sequence is not necessarily absolutely 

summable.

▪ The sequence 𝑥[𝑛] = ቊ
1/𝑛 𝑛 ≥ 1
0 𝑛 ≤ 0

has finite energy equal to σ𝑛=1
∞ (

1

𝑛
)2 = 𝜋2/6 but is not absolutely 

summable.

Examples



• To represent a finite energy sequence 𝑥[𝑛] that is not absolutely summable 

by DTFT, it is necessary to consider the so called mean-square 

convergence (weak convergence) of 𝑋(𝑒𝑗𝜔):

lim
𝐾→∞

න

−𝜋

𝜋

𝑋(𝑒𝑗𝜔) − 𝑋𝐾(𝑒
𝑗𝜔)

2
𝑑𝜔 = 0

where 𝑋𝐾(𝑒
𝑗𝜔) = σ𝑛=−𝐾

𝐾 𝑥[𝑛]𝑒−𝑗𝜔𝑛.

• Here, the total energy of the error 𝑋(𝑒𝑗𝜔) − 𝑋𝐾(𝑒
𝑗𝜔) must approach zero at 

each value of 𝜔 as 𝐾 goes to ∞.

• In such a case, the absolute value of the error may not go to zero as 

𝐾 goes to ∞ and the DTFT is no longer bounded.

Discrete Time Fourier Transform: mean square convergence



• Consider the DTFT:

𝐻𝐿𝑃(𝑒
𝑗𝜔) = ቊ

1, 0 ≤ 𝜔 ≤ 𝜔𝑐
0, 𝜔𝑐 < 𝜔 ≤ 𝜋

• The inverse DTFT is given by

ℎ𝐿𝑃 𝑛 =
1

2𝜋
න

−𝜋

𝜋

𝐻𝐿𝑃 𝑒𝑗𝜔 𝑒𝑗𝜔𝑛 𝑑𝜔 =
1

2𝜋
න

−𝜔𝑐

𝜔𝑐

𝑒𝑗𝜔𝑛 𝑑𝜔

=
1

2𝜋

𝑒𝑗𝜔𝑐𝑛

𝑗𝑛
−

𝑒−𝑗𝜔𝑐𝑛

𝑗𝑛
=

sin 𝜔𝑐𝑛

𝜋𝑛
, −∞ < 𝑛 < ∞

• The energy of ℎ𝐿𝑃[𝑛] is given by 𝐸ℎ =
1

2𝜋
𝜋−׬
𝜋
𝐻𝐿𝑃 𝑒𝑗𝜔

2
𝑑𝜔 =

𝜔𝑐

𝜋
. 

• ℎ𝐿𝑃[𝑛] is a finite-energy sequence, but it is not absolutely summable. 

Example

𝐻𝐿𝑃(𝑒
𝑗𝜔)

𝜔𝑐 𝜋0

1

−𝜋 −𝜔𝑐
𝜔



• As a result

෍

𝑛=−𝐾

𝐾

ℎ𝐿𝑃[𝑛]𝑒
−𝑗𝜔𝑛 = ෍

𝑛=−𝐾

𝐾
sin𝜔𝑐 𝑛

𝜋𝑛
𝑒−𝑗𝜔𝑛

does not uniformly converge to

𝐻𝐿𝑃 𝑒𝑗𝜔 = ቊ
1, 0 ≤ 𝜔 ≤ 𝜔𝑐
0, 𝜔𝑐 < 𝜔 ≤ 𝜋

for all values of 𝜔, but converges to 𝐻𝐿𝑃(𝑒
𝑗𝜔) in the mean-square sense.

• The mean-square convergence property of the sequence ℎ𝐿𝑃[𝑛] can be 

further illustrated by examining the plot of the function

𝐻𝐿𝑃,𝐾(𝑒
𝑗𝜔) = ෍

𝑛=−𝐾

𝐾
sin𝜔𝑐 𝑛

𝜋𝑛
𝑒−𝑗𝜔𝑛

for various values of 𝐾 as shown next.

Example cont.



Example cont.

𝐾 = 1 𝐾 = 3

𝐾 = 9 𝐾 = 25



• As it can be seen from these plots, independent of the value of 𝐾 there are 

ripples in the plot of 𝐻𝐿𝑃,𝐾(𝑒
𝑗𝜔) around both sides of the point 𝜔 = 𝜔𝑐.

• The number of ripples increases as 𝐾 increases with the height of the 

largest ripple remaining the same for all values of 𝐾.

• As 𝐾 goes to infinity, the condition

lim
𝐾→∞

න

−𝜋

𝜋

𝐻𝐿𝑃(𝑒
𝑗𝜔) − 𝐻𝐿𝑃,𝐾(𝑒

𝑗𝜔)
2
𝑑𝜔 = 0

holds, indicating the convergence of 𝐻𝐿𝑃,𝐾(𝑒
𝑗𝜔) to 𝐻𝐿𝑃(𝑒

𝑗𝜔).

• The oscillatory behavior observed in 𝐻𝐿𝑃,𝐾(𝑒
𝑗𝜔) is known as the Gibbs 

phenomenon.

Example cont.



• The DTFT can also be defined for a certain class of sequences which are 

neither absolutely summable nor square summable.

• Examples of such sequences are the unit step sequence 𝑢[𝑛], the 

sinusoidal sequence cos(𝜔𝑜𝑛 + 𝜑) and the complex exponential sequence

𝐴𝛼𝑛. These are neither absolutely summable nor square summable.

• For this type of sequences, a DTFT representation is possible using Dirac 

delta functions.

• A Dirac delta function 𝛿(𝜔) is a “function” of 𝜔 with infinite height, zero 

width, and unit area.

• It is the limiting form of a unit area pulse function 𝑝Δ(𝜔) as Δ goes to zero 

𝛿 𝜔 = lim
Δ→0

𝑝Δ(𝜔)

satisfying

∞−׬
∞
𝑝Δ 𝜔 𝑑𝜔 = 1, 𝑝Δ 𝜔 = 0, 𝜔 ≠ 0

Neither absolutely- nor square- summable

w
2
−

2
0

1

Δ

)(w


p



• Consider the complex exponential sequence 𝑥[𝑛] = 𝑒𝑗𝜔𝑜𝑛, 𝜔𝑜 real. Its 
DTFT is given by

𝑋(𝑒𝑗𝜔) = ෍

𝑘=−∞

∞

2𝜋𝛿(𝜔 − 𝜔𝑜 + 2𝜋𝑘)

where 𝛿(𝜔) is an impulse function of 𝜔 and −𝜋 ≤ 𝜔𝑜 ≤ 𝜋.

• To verify the above we can take the IDTFT of 𝑋(𝑒𝑗𝜔) above:

𝑥[𝑛] =
1

2𝜋
න

−𝜋

𝜋

෍

𝑘=−∞

∞

2𝜋𝛿(𝜔 − 𝜔𝑜 + 2𝜋𝑘)𝑒𝑗𝜔𝑛𝑑𝜔 = න

−𝜋

𝜋

δ(ω − ω𝑜)𝑒
𝑗𝜔𝑛 𝑑𝜔 = 𝑒𝑗𝜔𝑜𝑛

Example



DTFT properties (listed without proof)



𝑥[𝑛]: A complex sequence

DTFT properties (listed without proof)



𝑥[𝑛]: A real sequence

DTFT properties (listed without proof)



𝛿[𝑛] ↔ 1

1 ↔ ෍

𝑘=−∞

∞

2𝜋𝛿(𝜔 + 2𝜋𝑘)

𝑢[𝑛] ↔
1

1 − 𝑒−𝑗𝜔
+ ෍

𝑘=−∞

∞

𝜋𝛿(𝜔 + 2𝜋𝑘)

𝑒𝑗𝜔𝑜𝑛 ↔ ෍

𝑘=−∞

∞

2𝜋𝛿(𝜔 − 𝜔𝑜 + 2𝜋𝑘)

𝛼𝑛𝑢[𝑛], ( 𝛼 < 1) ↔
1

1 − 𝛼𝑒−𝑗𝜔

Common DTFT pairs



• Determine the DTFT of the sequence

𝑦[𝑛] = (𝑛 + 1)𝛼𝑛𝑢[𝑛], 𝛼 < 1

• Let 𝑥[𝑛] = 𝛼𝑛𝑢[𝑛], 𝛼 < 1. We can, therefore, write

𝑦[𝑛] = 𝑛𝑥[𝑛] + 𝑥[𝑛]

• From tables, the DTFT of 𝑥[𝑛] is given by

𝑋(𝑒𝑗𝜔) =
1

1 − 𝛼𝑒−𝑗𝜔

• Using the differentiation property of the DTFT given in previous tables, we 

observe that the DTFT of 𝑛𝑥[𝑛] is given by

𝑗
𝑑𝑋(𝑒𝑗𝜔)

𝑑𝜔
= 𝑗

𝑑

𝑑𝜔

1

1 − 𝛼𝑒−𝑗𝜔
=

𝛼𝑒−𝑗𝜔

(1 − 𝛼𝑒−𝑗𝜔)2

• Next using the linearity property of the DTFT given in previous tables we 

arrive at

𝑌(𝑒𝑗𝜔) =
𝛼𝑒−𝑗𝜔

(1 − 𝛼𝑒−𝑗𝜔)2
+

1

1 − 𝛼𝑒−𝑗𝜔
=

1

(1 − 𝛼𝑒−𝑗𝜔)2

Example



• Determine the DTFT of the sequence v[n] defined by

𝑑0𝑣[𝑛] + 𝑑1𝑣[𝑛 − 1] = 𝑝0𝛿[𝑛] + 𝑝1𝛿[𝑛 − 1], 𝑑1/𝑑0 < 1

• From previous tables, we see that the DTFT of 𝛿[𝑛] is 1.

• Using the time-shifting property of the DTFT given in previous tables, we 

observe that the DTFT of 𝛿[𝑛 − 1] is 𝑒−𝑗𝜔 and the DTFT of 𝑣[𝑛 − 1] is 

𝑒−𝑗𝜔𝑉(𝑒𝑗𝜔).

• Using the linearity property of previous tables we then obtain the 

frequency-domain representation of 𝑑0𝑣[𝑛] + 𝑑1𝑣[𝑛 − 1] = 𝑝0𝛿[𝑛] +
𝑝1𝛿[𝑛 − 1] as

𝑑0𝑉(𝑒
𝑗𝜔) + 𝑑1𝑒

−𝑗𝜔𝑉(𝑒𝑗𝜔) = 𝑝0 + 𝑝1𝑒
−𝑗𝜔

• Solving the above equation we get

𝑉(𝑒𝑗𝜔) =
𝑝0 + 𝑝1𝑒

−𝑗𝜔

𝑑0 + 𝑑1𝑒
−𝑗𝜔

Example



• The total energy of a finite-energy sequence 𝑔[𝑛] is given by

𝜀𝑔 = ෍

𝑛=−∞

∞

𝑔[𝑛] 2

• From Parseval’s Theorem we know that 

𝜀𝑔 = ෍

𝑛=−∞

∞

𝑔[𝑛] 2 =
1

2𝜋
න

−𝜋

𝜋

𝐺(𝑒𝑗𝜔)
2
𝑑𝜔

• The quantity 𝑆𝑔𝑔(𝜔) = 𝐺(𝑒𝑗𝜔)
2

is called the energy density spectrum.

• The area under this curve in the range −𝜋 ≤ 𝜔 ≤ 𝜋 divided by 2𝜋 is the 

energy of the sequence.

Energy Density Spectrum



• Compute the energy of the sequence

ℎ𝐿𝑃 𝑛 =
sin𝜔𝑐𝑛

𝜋𝑛
, −∞ < 𝑛 < ∞

• Here, 

෍

𝑛=−∞

∞

ℎ𝐿𝑃[𝑛]
2 =

1

2𝜋
න

−𝜋

𝜋

𝐻𝐿𝑃(𝑒
𝑗𝜔)

2
𝑑𝜔

𝐻𝐿𝑃(𝑒
𝑗𝜔) = ቊ

1, 0 ≤ 𝜔 ≤ 𝜔𝑐
0, 𝜔𝑐 < 𝜔 ≤ 𝜋

• Therefore,

෍

𝑛=−∞

∞

ℎ𝐿𝑃[𝑛]
2 =

1

2𝜋
න

−𝜔𝑐

𝜔𝑐

𝑑𝜔 =
𝜔𝑐
𝜋
< ∞

• Hence, ℎ𝐿𝑃 𝑛 is a finite energy sequence.

Example



• We wish to perform spectral analysis using digital computers.

• Therefore, we must somehow sample the Discrete Time Fourier Transform

of the signal!

• We will compute a discrete version of the DTFT of a sampled, finite-

duration signal. This transform is known as the Discrete Fourier Transform

(DFT).

• The goal is to understand how DFT is related to the original Fourier

transform.

• We showed that a signal bandlimited to 𝐵𝐻𝑧 can be reconstructed from

signal samples if they are obtained at a rate of 𝑓𝑠 > 2𝐵 samples per second.

• Not that the signal spectrum exists over the frequency range (in 𝐻𝑧) from

− 𝐵 to 𝐵.

• The interval 2𝐵 is called spectral width.

Note the difference between spectral width (2𝐵) and bandwidth (𝐵).

• In time sampling theorem: 𝑓𝑠 > 2𝐵 or 𝑓𝑠 >(spectral width).

Introduction. Time sampling theorem resume.



• Consider a time-limited signal 𝑥(𝑡) with a spectrum 𝑋(𝜔).

• In general, a time-limited signal is 0 for 𝑡 < 𝑇1 and 𝑡 > 𝑇2. The duration of

the signal is 𝜏 = 𝑇2 − 𝑇1. Below we assume that 𝑇1 = 0.

• Recall that 𝑋 𝜔 = ∞−׬
∞
𝑥 𝑡 𝑒−𝑗𝜔𝑡𝑑𝑡 = 0׬

𝜏
𝑥 𝑡 𝑒−𝑗𝜔𝑡𝑑𝑡.

• The Fourier transform 𝑋(𝜔) is assumed real for simplicity.

Spectral sampling theorem

The spectrum 𝑋(𝜔) of a signal 𝑥(𝑡) , time-limited to a duration of

𝜏 seconds, can be reconstructed from the samples of 𝑋(𝜔) taken at a rate

𝑅 samples per 𝐻𝑧, where 𝑅 > 𝜏 (the signal width or duration in seconds).

Time sampling theorem has a dual: Spectral sampling theorem



• We now construct the periodic signal 𝑥𝑇0(𝑡). This is a periodic extension

of 𝑥(𝑡) with period 𝑇0 > 𝜏.

• This periodic signal can be expressed using Fourier series.

𝑥𝑇0 𝑡 = σ𝑛=−∞
𝑛=∞ 𝐷𝑛𝑒

𝑗𝑛𝜔0𝑡, 𝜔0 =
2𝜋

𝑇0

𝐷𝑛 =
1

𝑇0
0׬
𝑇0 𝑥(𝑡) 𝑒−𝑗𝑛𝜔0𝑡𝑑𝑡 =

1

𝑇0
0׬
𝜏
𝑥(𝑡) 𝑒−𝑗𝑛𝜔0𝑡𝑑𝑡 =

1

𝑇0
𝑋(𝑛𝜔0)

• The result indicates that the coefficients of the Fourier series for 𝑥𝑇0 𝑡

are the values of 𝑋(𝜔) taken at integer multiples of 𝜔0 and scaled by
1

𝑇0
.

• We call spectrum of a periodic signal the weights of the exponential

terms in its Fourier series representation.

• The above implies that the spectrum of the periodic signal 𝑥𝑇0 𝑡 is the

sampled version of spectrum 𝑋 𝜔 .

Spectral sampling theorem



• The spectrum of the periodic signal 𝑥𝑇0 𝑡 is the sampled version of

spectrum 𝑋 𝜔 (see figure below).

▪ If successive cycles of 𝑥𝑇0 𝑡 do not overlap, 𝑥(𝑡) can be recovered

from 𝑥𝑇0 𝑡 .

▪ If we know 𝑥(𝑡) we can find 𝑋(𝜔).
▪ The above imply that 𝑋(𝜔) can be reconstructed from its samples.

• These samples are separated by the so called fundamental frequency

𝑓0 =
1

𝑇0
𝐻𝑧 or 𝜔0 = 2𝜋𝑓0𝑟𝑎𝑑𝑠/𝑠 of the periodic signal 𝑥𝑇0 𝑡 .

• Therefore, the condition for recovery is 𝑇0 > 𝜏 ⇒ 𝑓0 <
1

𝜏
𝐻𝑧.

Spectral sampling theorem cont.



• To reconstruct the spectrum 𝑋(𝜔) from the samples of 𝑋(𝜔), the samples

should be taken at frequency intervals 𝑓0 <
1

𝜏
𝐻𝑧. If the sampling rate is 𝑅

frequency samples/𝐻𝑧 we have:

𝑅 =
1

𝑓0
> 𝜏 samples/𝐻𝑧

• We know that the continuous version of a signal can be recovered from its

sampled version through the so called signal interpolation formula:

(refer to a Signals and Systems book for the proof of it)

𝑥 𝑡 = σ𝑛 𝑥 𝑛𝑇𝑠 ℎ 𝑡 − 𝑛𝑇𝑠 = σ𝑛 𝑥 𝑛𝑇𝑠 sinc
𝜋𝑡

𝑇𝑠
− 𝑛𝜋

We use the dual of the approach employed to derive the signal

interpolation formula above, to obtain the spectral interpolation formula

as follows. We assume that 𝑥(𝑡) is time-limited to 𝜏 and centred at 𝑇𝑐. We

can prove that:

𝑋(𝜔) = σ𝑛=−∞𝑋 𝑛𝜔0 sinc
𝜔𝑇0

2
− 𝑛𝜋 𝑒−𝑗(𝜔−𝑛𝜔0)𝑇𝑐, 𝜔0 =

2𝜋

𝑇0
, 𝑇0 > 𝜏

Spectral interpolation formula



• We know that 𝑥𝑇0 𝑡 = σ𝑛=−∞
𝑛=∞ 𝐷𝑛𝑒

𝑗𝑛𝜔0𝑡, 𝜔0 =
2𝜋

𝑇0

• Therefore, ℱ 𝑥𝑇0 𝑡 = 2𝜋 σ𝑛=−∞
𝑛=∞ 𝐷𝑛 𝛿(𝜔 − 𝑛𝜔0)

[It is easier to prove that ℱ−1 σ𝑛=−∞
𝑛=∞ 𝐷𝑛 𝛿 𝜔 − 𝑛𝜔0 = 𝑥𝑇0 𝑡 ]

• We can write 𝑥 𝑡 = 𝑥𝑇0 𝑡 ∙ rect
𝑡−𝑇𝑐

𝑇0
(1)

[We were given that 𝑥 𝑡 is centred at 𝑇𝑐]

• We know that ℱ rect
𝑡

𝑇0
= 𝑇0sinc

𝜔𝑇0

2
.

• Therefore, ℱ rect
𝑡−𝑇𝑐

𝑇0
= 𝑇0sinc

𝜔𝑇0

2
𝑒−𝑗𝜔𝑇𝑐.

• From (1) we see that 𝑋 𝜔 =
1

2𝜋
ℱ 𝑥𝑇0 𝑡 ∗ ℱ rect

𝑡−𝑇𝑐

𝑇0

• 𝑋 𝜔 =
1

2𝜋
2𝜋 σ𝑛=−∞

𝑛=∞ 𝐷𝑛 𝛿(𝜔 − 𝑛𝜔0) ∗ 𝑇0sinc
𝜔𝑇0

2
𝑒−𝑗𝜔𝑇𝑐

𝑋(𝜔) = σ𝑛=−∞𝐷𝑛𝑇0sinc
(𝜔−𝑛𝜔0)𝑇0

2
𝑒−𝑗(𝜔−𝑛𝜔0)𝑇𝑐, 𝜔0 =

2𝜋

𝑇0
, 𝑇0 > 𝜏

𝑋(𝜔) = ෍

𝑛=−∞

𝑋 𝑛𝜔0 sinc
𝜔𝑇0
2

− 𝑛𝜋 𝑒−𝑗(𝜔−𝑛𝜔0)𝑇𝑐

Spectral interpolation formula: Proof.



• The numerical computation of the Fourier transform requires samples of

𝑥(𝑡) since computers can work only with discrete values.

• Furthermore, the Fourier transform can only be computed at some discrete

values of 𝜔.

• The goal of what follows is to relate the samples of 𝑋(𝜔) with the samples

of 𝑥(𝑡).
• Consider a time-limited signal 𝑥(𝑡) . Its spectrum 𝑋(𝜔) will not be

bandlimited (try to think why). In other words aliasing after sampling cannot

be avoided.

• The spectrum ത𝑋(𝜔) of the sampled signal ҧ𝑥(𝑡) consist of 𝑋(𝜔) repeating

every 𝑓𝑠𝐻𝑧 with 𝑓𝑠 =
1

𝑇
.

Discrete Fourier Transform DFT 



• Suppose now that the sampled signal ҧ𝑥(𝑡) is repeated periodically every 𝑇0
seconds.

• According to the spectral sampling theorem, this operation results in

sampling the spectrum at a rate of 𝑇0 samples/𝐻𝑧. This means that the

samples are spaced at 𝑓0 =
1

𝑇0
𝐻𝑧.

• Therefore, when a signal is sampled and periodically repeated, its

spectrum is also sampled and periodically repeated.

• The goal of what follows is to relate the samples of 𝑋(𝜔) with the samples

of 𝑥(𝑡).

Discrete Fourier Transform DFT cont. 



• The number of samples of the discrete signal in one period 𝑇0 is 𝑁0 =
𝑇0

𝑇

(figure below left).

• The number of samples of the discrete spectrum in one period is 𝑁0
′ =

𝑓𝑠

𝑓0
.

• We see that 𝑁0
′ =

𝑓𝑠

𝑓0
=

1

𝑇
1

𝑇0

=
𝑇0

𝑇
= 𝑁0.

• This is an interesting observation: the number of samples in a period

of time is identical to the number of samples in a period of frequency.

Discrete Fourier Transform DFT cont. 



• Since 𝑋(𝜔) is not bandlimited, we will get some aliasing effect:

• Furthermore, if 𝑥(𝑡) is not time limited, we need to truncate 𝑥(𝑡) with a

window function. This leads to a “leakage” effect (refer to a Signals and

Systems book for the demonstration of it).

Aliasing and leakage effects 



• If 𝑥(𝑛𝑇) and 𝑋 𝑘𝜔0 are the 𝑛th and 𝑘th samples of 𝑥 𝑡 and 𝑋(𝜔)
respectively, we define:

𝑥[𝑛] = 𝑇𝑥 𝑛𝑇 =
𝑇0
𝑁0

𝑥(𝑛𝑇)

𝑋[𝑘] = 𝑋(𝑘𝜔0), 𝜔0 = 2𝜋𝑓0 =
2𝜋

𝑇0

• It can be shown that 𝑥[𝑛] and 𝑋[𝑘] are related by the following equations:

𝑋[𝑘] = σ𝑛=0
𝑁0−1 𝑥[𝑛]𝑒−𝑗𝑛𝑘Ω0 (1)

𝑥[𝑛] =
1

𝑁0
σ𝑘=0
𝑁0−1𝑋[𝑘]𝑒𝑗𝑘𝑛Ω0 , Ω0 = 𝜔0𝑇 =

2𝜋

𝑁0
(2)

• The equations (1) and (2) above are the direct and inverse Discrete

Fourier Transforms respectively, known as DFT and IDFT.

• In the above equations, the summation is performed from 0 to 𝑁0 − 1. It

can be shown that the summation can be performed over any successive

𝑁0 values of 𝑛 or 𝑘.

Formal definition of DFT 



• Use DFT to compute the Fourier transform of 8rect 𝑡 (Lathi page 808.)

• The essential bandwidth 𝐵 (calculated by finding where the amplitude

response drops to 1% of its peak value) is well above 16𝐻𝑧. However, we

select 𝐵 = 4𝐻𝑧:

▪ To observe the effects of aliasing.

▪ In order not to end up with a huge number of samples in time.

Example



• 𝐵 = 4𝐻𝑧, 𝑓𝑠 = 8𝐻𝑧, 𝑇 =
1

𝑓𝑠
=

1

8
.

• For the frequency resolution we choose 𝑓0 =
1

4
𝐻𝑧. This choice gives us 4

samples in each lobe of 𝑋 𝜔 and 𝑇0 =
1

𝑓0
= 4𝑠.

Example cont.



Example cont.

• 𝑁0 =
𝑇0

𝑇
=

4

1/8
= 32. Therefore, we must repeat 𝑥(𝑡) every 4𝑠 and take

samples every
1

8
𝑠. This yields 32 samples in a period.

• 𝑥[𝑛] = 𝑇𝑥 𝑛𝑇 =
1

8
𝑥(

𝑛

8
) with 𝑥 𝑡 = 8rect 𝑡 .

• The DFT of the signal 𝑥[𝑛] is obtained by taking any full period of 𝑥[𝑛]
(i.e., 𝑁0 samples) and not necessarily 𝑁0 over the interval (0, 𝑇0) as we

assumed in the theoretical analysis of DFT.



Example cont.

• 𝑥[𝑛] = ቐ
1 0 ≤ 𝑛 ≤ 3 and 29 ≤ 𝑛 ≤ 31
0 5 ≤ 𝑛 ≤ 27
0.5 𝑛 = 4,28

• Ω0 =
2𝜋

32
=

𝜋

16

• 𝑋[𝑘] = σ𝑛=0
𝑁0−1 𝑥[𝑛]𝑒−𝑗𝑘Ω0𝑛 = σ𝑛=0

31 𝑥[𝑛]𝑒−𝑗𝑘(𝜋/16)𝑛. See figure below.



Example cont.

• Observe that 𝑋[𝑘] is periodic.

• The dotted curve depicts the Fourier transform of 𝑥 𝑡 = 8rect 𝑡 .

• The aliasing error is quite visible when we use a single graph to compare

the superimposed plots. The error increases rapidly with 𝑘.



Appendix: Proof of DFT relationships

• For the sampled signal we have:

𝑥(𝑡) = σ𝑛=0
𝑁0−1 𝑥(𝑛𝑇)𝛿(𝑡 − 𝑛𝑇).

• Since 𝛿(𝑡 − 𝑛𝑇) ⇔ 𝑒−𝑗𝑛𝜔𝑇

𝑋(𝜔) = ෍

𝑛=0

𝑁0−1

𝑥(𝑛𝑇)𝑒−𝑗𝑛𝜔𝑇

• For 𝜔 ≤
𝜔𝑠

2
, 𝑋(𝜔) the Fourier transform of 𝑥(𝑡) is

𝑋 𝜔

𝑇
, i.e.,

𝑋 𝜔 = 𝑇𝑋(𝜔) = 𝑇σ𝑛=0
𝑁0−1 𝑥(𝑛𝑇)𝑒−𝑗𝑛𝜔𝑇, 𝜔 ≤

𝜔𝑠

2

𝑋[𝑘] = 𝑋 𝑘𝜔0 = 𝑇 ෍

𝑛=0

𝑁0−1

𝑥(𝑛𝑇)𝑒−𝑗𝑛𝑘𝜔0𝑇

• If we let 𝜔0𝑇 = Ω0 then Ω0 = 𝜔0𝑇 = 2𝜋𝑓0𝑇 =
2𝜋

𝑁0
and also 𝑇𝑥 𝑛𝑇 = 𝑥[𝑛].

• Therefore, 𝑋[𝑘] = σ𝑛=0
𝑁0−1 𝑥[𝑛]𝑒−𝑗𝑛𝑘Ω0



Appendix: Proof of DFT relationships

• To prove the inverse relationship write:

σ𝑘=0
𝑁0−1𝑋[𝑘]𝑒𝑗𝑘𝑚Ω0 = σ𝑘=0

𝑁0−1 σ𝑛=0
𝑁0−1 𝑥[𝑛]𝑒−𝑗𝑛𝑘Ω0 𝑒𝑗𝑘𝑚Ω0 ⇒

σ𝑘=0
𝑁0−1𝑋[𝑘]𝑒𝑗𝑘𝑚Ω0 = σ𝑛=0

𝑁0−1 𝑥[𝑛] σ𝑘=0
𝑁0−1 𝑒−𝑗𝑘(𝑛−𝑚)Ω0

• σ𝑘=0
𝑁0−1 𝑒−𝑗𝑘(𝑛−𝑚)Ω0 = σ𝑘=0

𝑁0−1 𝑒
−𝑗𝑘(𝑛−𝑚)

2𝜋

𝑁0 = ቊ
𝑁0 𝑛 −𝑚 = 𝑟𝑁0, 𝑟 ∈ ℤ
0 otherwise

• Since 0 ≤ 𝑚, 𝑛 ≤ 𝑁0 − 1 the only multiple of 𝑁0 that the term (𝑛 − 𝑚) can

be is 0. Therefore:

෍

𝑘=0

𝑁0−1

𝑒
−𝑗𝑘(𝑛−𝑚)

2𝜋
𝑁0 = ቊ

𝑁0 𝑛 −𝑚 = 0 ⇒ 𝑛 = 𝑚
0 otherwise

• Therefore,

𝑥𝑚 =
1

𝑁0
σ𝑘=0
𝑁0−1𝑋[𝑘]𝑒𝑗𝑘𝑚Ω0, Ω0 =

2𝜋

𝑁0

𝑋[𝑘]



Continue with Dr Mike Brookes’s notes

• For the rest of the material related to DFT refer to Dr Mike Brookes’s

notes Three Different Fourier Transforms, from section Symmetries to the

end.


