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Three different Fourier Transforms

There are three useful representations of signals in frequency domain.
- Continuous Time Fourier Transform (CTFT)

= Continuous aperiodic signals. Continuous time and continuous frequency.
- Discrete Time Fourier Transform (DTFT)

= Discrete aperiodic signals. Discrete time and continuous frequency.
- Discrete Fourier Transform (DFT)

= Discrete periodic signals. Discrete Time and discrete frequency.

Forward Transform Inverse Transform
CTFT 0 , 1 (* ,
X3(Q) = J x(t)e M dt x(t) = %j X(Q)e/tda
Q: “real” frequency
DTFT _ > _ 1 .
X(e/®) = Z x[n]e 7" x[n] = — X(e!®)e/dw
T
n=—oo —
w = QT:"normalised" angular frequency i
N—-1 N—
DFT _jankn 1 ]21'[—
X[k] = Z x[n]e T2 N xfn] =+ 2

n=0
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Discrete Time Fourier Transform

- The discrete-time Fourier transform (DTFT) X(e/%) of a sequence x[n]
IS given by

(0.0]

X(el®) = z x[n]e~J@n

n=-—oo

 In general X(e/®) is a complex function of the real variable w and can be
written as
X(e'?) = Xre(e7®) + jXim(e’?)
where X,.(e/®) and Xj,(e’/®) are the real and imaginary parts of X(e/%)
and are real functions of w.

«  X(e/®) can alternatively be expressed as
X(eJ®) = |X(ejw)|ej9(w)
where |X(e/®)| and 6(w) are the amplitude and phase of X(e/*) and are
real functions of w as well.



Imperial College

Discrete Time Fourier Transform

For a real sequence x[n], |X(e/®)| and X,.(e/®) are even functions of w,
whereas, 8(w) and X;,(e’®) are odd functions of w.

Note that for any integer k
X(efw) — |X(ejw)|ej[6(w)+2nk] — |X(ejw)|ej9(w)

The above property indicates that the phase function 8(w) cannot be
uniquely specified for the DTFT. Recall that the same observation holds
for the CTFT.

Unless otherwise stated, we shall assume that the phase function 6(w)
IS restricted to the following range of values:

—-T<0(w)<m
called the principal value.
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Discrete Time Fourier Transform

The phase response of DTFT might exhibit discontinuities of 2t radians
In the plot.

= [In numerical computations, when the computed phase function is outside the
range [—m, ], the phase is computed modulo 27 to bring the computed value
to the above range.]

An alternate type of phase function that is a continuous function of w Is
often used in that case.

It is derived from the original phase function by removing the
discontinuities of 2.

The process of removing the discontinuities is called phase
unwrapping.

Sometimes the continuous phase function generated by unwrapping is
denoted as 0. (w).
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Discrete Time Fourier Transform Periodicity

Unlike the Continuous Time Fourier Transform, the DTFT is a periodic
function in w with period 2.
X(ej(wo+27tk)) — Z%o:_oox[n]e—j(wo+2nk)n — Z?lo:_oox[n]e—jwon e—jann —
Y _ o x[n]e /@ = X(e/®0), for any integer k.
Therefore, X(e/®) = X% _,, x[n]e ™ /®™ imitates a Fourier Series
representation of the periodic function X (e/®).
As a result, the Fourier Series coefficients x[n] can be derived from
X (e/®) using the Fourier integral

V[

x[n] X(e!®)e/ " dw

T 2n

T
called the Inverse DTFT (IDTFT).
Periodicity of DTFT is not a new concept; we know from sampling
theory, that sampling a continuous signal results in a periodic
repetition of its CTFT.
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Revision
Nyquist sampling: Just ahout the correct Sampling rate

In that case we use the Nyquist sampling rate of 10Hz.

The spectrum X(w) consists of back-to-back, non-overlapping
repetitions of TiX (w) repeating every 10Hz.

In order to recover X(w) from X(w) we must use an ideal lowpass filter

of bandwidth 5Hz. This is shown in the right figure below with the dotted
line.
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Revision
Oversampling: What happens if we sample too quickly?

Sampling at higher than the Nyquist rate (in this case 20Hz) makes
reconstruction easier.

The spectrum X(w) consists of non-overlapping repetitions of TiX(a)),

repeating every 20Hz with empty bands between successive cycles.

In order to recover X(w) from X(w) we can use a practical lowpass filter
and not necessarily an ideal one. This is shown in the right figure below
with the dotted line.

Lx.

i Practical filter -
A4 N

34
) mJ T%‘.f..-f“r'-r .

—03  —010 02 t—= — 407 —10m 107 07 w—>

The filter we use for reconstruction must have gain T, and bandwidth of
any value between B and (f; — B)Hz.
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Revision
Undersampling: What happens if we sampie too slowly?

Sampling at lower than the Nyquist rate (in this case 5Hz) makes
reconstruction impossible.

The spectrum X(w) consists of overlapping repetitions of TiX(a))

repeating every 5Hz.
X(w) is not recoverable from X (w).

Sampling below the Nyquist rate corrupts the signal. This type of
distortion is called aliasing.

1 )_i'{w]

t 50 ] S

i U |

—40mr  —207 ! 20w 40m w—>

04 -02 0 02 11— 20 _s 5 5o [ (Hz) —>
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More DTFT Properties

The DTFT is the z —transform evaluated at z = e/®.
[Recall that X(z) = ),%, x[n] z™™].
Therefore, the DTFT converges if the ROC includes |z]| = 1 (z = /?).

The DTFT is the same as the CTFT of a signal comprising impulses of
appropriate heights at the sample instances.

x5(t) = Lnx[n]6(t — nT) = x(t) L% 6(t — nT)

= Recall that x[n] = x(nT)

X(e/®) = Z x[n]e Ion = z x[n] j(ﬁ(t—nT)e_jw%dt

.t - _
= [ Zrece x[n] 8(t — nT)]e™“Tdt = [ xs(t)e ™/ dt
= For the above the condition }.>°-_ . |x[n]| < o0 must hold.
= w=QT
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The DTFT of a shifted discrete Dirac function 6[n — k] is given by:

Mw)= ) 8[n—kleTjom = emiok
n=—oo

The DTFT of the causal sequence x[n] = a™u[n], |a| < 1 is given by:
X(e/?) = e a™u[n]e ™" = ¥ gate T/ = FF (eI =
if |ae‘j“)| =la| <1

For a = 0.5, the magnitude and phase of X(e/®) =1/(1 — 0.5e7/?) are
shown below.

1
1—-qe—J®

nnnnnnnnnnnnnnnnn

L | i L | | N R TR S—
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Inverse Discrete Time Fourier Transtorm (IDTFT)

« Lets us prove the previous statement that the IDTFT is defined as:

T

e jwypjwn
x[n] o X(e/?)e!/"dw
—T1T
Proof
1 ([ <
= — J(Z x[f]e‘f“”> el dw
2T
m M=—00
- 1 r - sint (n—¥)
— _— jo(n—1) _
{)z x[£] o Je dw {)z x[?] 2 (n =)
=—00 —TT =—00

(Note that the order of integration and summation can be interchanged if
the summation inside the top brackets converges uniformly, i.e., if X(e/%)
exists.)
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Inverse Discrete Time Fourier Transform cont.

sinn(n—#)_{l n=24¢

EI=0 = =10 n=e

Hence,
oo

sint(n—*) - B
Z U z x[£]5[n — ] = x[n]

f=—00 f=—00
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Discrete Time Fourier Transform: uniform convergence

An infinite series of the form X(e/®) = Y% _, x[n]e /“™ may or may not
converge.

Let Xx (e/®) = ¥N__g x[n]e™/®"
For uniform convergence (strong convergence) of X (e/®) we require:
lim XK(ef“)) X(el®)

K—oo

If x[n] is an absolutely summable sequence, i.e., if }7-_|x[n]| < oo,

then
< Y itallle ol s Y tatall <eo

n=—oo n=-—oo

(00}

5" s

n=-—oo

[X(e7)] =

for all values of w

Thus, the absolute summability of x[n] is a sufficient condition for the
existence of the DTFT X(e/®).
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The sequence x[n ] = au[n] is absolutely summable for |a| < 1 since
n n
Z'“ [uln Z'“ = 1—|a|
n=—oco
and its DTFT converges uniformly to 1/(1 — ae™/®).
Note that:

A Since Y7-_olx[n]|? < Or-_lx[n]])?, an absolutely summable
sequence has always finite energy.

O However, a finite energy sequence is not necessarily absolutely
summable.

1/n n=>1

= The sequence x[n] = {O <0

has finite energy equal to Z?{’=1(%)2 = /6 but is not absolutely
summable.
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Discrete Time Fourier Transform: mean square convergence

To represent a finite energy sequence x[n] that is not absolutely summable
by DTFT, it is necessary to consider the so called mean-square

convergence (weak convergence) of X(e/®):

T

lim f X (/@) — Xk (/)| dw = 0
—T1T

where Xy (e/?) = YX__, x[n]e /@,

Here, the total energy of the error X(e/®) — X, (e’®) must approach zero at

each value of w as K goes to oo.

In such a case, the absolute value of the error may not go to zero as
K goes to oo and the DTFT is no longer bounded.
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Consider the DTFT: Hyp(e!®)

: 1, 0<|w|<w,
.]w p—
Hyp(e™™) {0, we < |lw| <7 1
- —Ww, 0 W, T
The inverse DTFT is given by
Wc
1 .
h;pln] = — jHLP(eJ‘”)eJ‘”" dw = - e/ dw
—wg

, —00 < n<oo

2T

1 [el®ct  eTJ®c\  sinwn
n

jn jn
: : 1 (m i) 12 Wc
The energy of hp[n] is given by E, = — _|Hip(e/®)| dw = .

h;p[n] is a finite-energy sequence, but it is not absolutely summable.
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EXxample cont.
e As aresult
K K
Y hptngeion = Y SO oo
LP mn
n=—K n=—-K

does not uniformly converge to
: 1, 0<|w|l<w
Hp(el?) =4 - - ¢
LP( ) {0, w. <|lw|<m
for all values of w, but converges to H;p(e’“) in the mean-square sense.

« The mean-square convergence property of the sequence h;p[n] can be

further illustrated by examining the plot of the function
K

T (jw) sin w, n _jwn
Lp,k\€ = § —— €
’ mmn
n=—K

for various values of K as shown next.
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K=1 3
1.5 . 1.5
1t il 1L s
N\
05+ 05}t
Or ot
-7 'O)C - 7T -TC - -
-0.5 : : : -0.5 : :
-4 -2 0 2 4 -4 -2 2
K=9 25
1.5 1.5
1r 11
05+ 05+t
Or ol
=TT '(&)c - TT -TC - -
-0.5 : : : -0.5 : :
-4 -2 0 2 4 -4 -2 2
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As it can be seen from these plots, independent of the value of K there are
ripples in the plot of H;p x(e/*) around both sides of the point w = w,.

The number of ripples increases as K increases with the height of the
largest ripple remaining the same for all values of K.

As K goes to infinity, the condition
V[

K—oo

lim j |Hyp(€79) — Hyp ¢ (e79)|” dw = 0
—T

holds, indicating the convergence of Hp x(e/®) to H;p(e’®).

The oscillatory behavior observed in H;p x(e/®) is known as the Gibbs
phenomenon.
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Neither ahsolutely- nor square- summabhle

The DTFT can also be defined for a certain class of sequences which are
neither absolutely summable nor square summable.

Examples of such sequences are the unit step sequence u[n], the
sinusoidal sequence cos( w,n + @) and the complex exponential sequence
Aa™. These are neither absolutely summable nor square summable.

For this type of sequences, a DTFT representation is possible using Dirac
delta functions.

A Dirac delta function é(w) is a “function” of w with infinite height, zero

width, and unit area.

It is the limiting form of a unit area pulse function p, (w) as A goes to zero
S(w) = ki_r)r(l) pa(w) p5(@)

A

satisfying
[ palw)dw = 1, pp(w) = 0, @ # 0

N[>
(@)
N[>

&
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Consider the complex exponential sequence x[n] = e/®o", w, real. Its
DTFT is given by

X(e/®) = z 216 (0 — w, + 27k)
k=—o0

where §(w) is an impulse function of w and - < w, < 7.
To verify the above we can take the IDTFT of X(e/“) above:

VIA
_1j
_Zn

—TT

T

Z 27'[5((1) — W, t+ an)ej“’"da) = j 8((1) — Q)O)ejwn do = ejwon

k=— —T
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London
DTFT properties (listed without proot)
Type of Property Sequence Discrete-Time Fourier Transform
gln] G(e!®)
h[n] H(e/?)
Linearity agln] + Bhln] aG(e/?) + BH (e/?)
Time-shifting gln — nyl e~ 1P G (e )
Frequency-shifting eJ@ol g[ ] G (ej (“)_"’”))
Differentiation dG(el®)
. ngln} J—
in frequency dw
Convolution glnl®h(n) G(e/?®)H (e/®)
Modulation glnlhln] = [T G(el®)H (el (@=9)) dp
o0 1 T : :
Parseval’s relation Z glnlh*[n] = — f G/ YH*(e’*)dw
2w J—x

n=—0Q0
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DTFT properties (listed without proof)

Sequence Discrete-Time Fourier Transform

x[n] X(/®)  x[n]: Acomplex sequence
x[—n] X (e~ /@)
x*[—n] X*(el®)

Re{x[n]}  Xcs(e/%) = 3{X(e/®) + X*(e™79))
jIm{x[n]}  Xca(e/?) = F{X(e/®) — X*(e™/?))
Xcs[n] Xre (ejw)

Xcaln] inm(ejw)

Note: Xcs(e/®) and Xca(e/®) are the conjugate-symmetric and conjugate-antisymmetric
parts of X (e/?), respectively. Likewise, x¢s[n] and xcq[n] are the conjugate-symmetric and
conjugate-antisymmetric parts of x[n], respectively.
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London
DTET properties (listed without proof)
Sequence Discrete-Time Fourier Transform
x[n] X(e/®) = Xre(e/®) + jXim(e/©)  x[n]: Areal sequence

Xev[n] Xre(ejw)

Xod[n] J Xim(e’?)

X(e/®) = X*(e~ /@)
Xre(e/?) = Xre(e™/%)
Symmetry relations Xim(€/®) = —Xim(e™7/®)

1X(e/?9)| = |X (e /@)
arg{X (e/?)} = —arg{X (e~/))

Note: xev([n] and xyq[n] denote the even and odd parts of x[n], respectively.
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Common DTFT pairs
én] e 1
1o 2né(w + 2mk)
k_z—oo
ufn] & ——— + Z 76 (e + 27k)

k=—c0

e/ @™ Z 28 (w — w, + 2mk)

k=—o

a"uln], (la|l <1) <

1 — qe J®
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Determine the DTFT of the sequence
y[n] = (n+ Da™u[n], |la| <1
Let x[n] = a™u[n], |a] < 1. We can, therefore, write
y[n] = nx[n] + x[n]
From tables, the DTFT of x[n] is given by
. 1
X(ejw) = 1 — qe—Jjo
Using the differentiation property of the DTFT given in previous tables, we
observe that the DTFT of nx[n] is given by
dX(e!®) . d 1 B ae 1?
) e dw <1 — ae‘f“)) (1 - aejw)2
Next using the linearity property of the DTFT given in previous tables we
arrive at

ae o 1 1

Y(e/®) = : _ = :
(€7 (1 — ae=I®)2 T 1—ae 7@ (1 —aeJ®)?
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Determine the DTFT of the sequence v[n] defined by
dov[n] ~+ dlv[n - 1] — p05[n] + p15[n - 1], |d1/d0| < 1

From previous tables, we see that the DTFT of §[n] is 1.

Using the time-shifting property of the DTFT given in previous tables, we
observe that the DTFT of §[n — 1] is e /¢ and the DTFT of v[n — 1] is
e IOV (e/®).
Using the linearity property of previous tables we then obtain the
frequency-domain representation of dyv[n] + d,v[n — 1] = pyd[n] +
p,0[n — 1] as

doV(e!®) + die 79V (el?) = py + pre™I?
Solving the above equation we get
po +pre ¢

V(e/®) = :
() =4 Tdew
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Energy Density Spectrum

The total energy of a finite-energy sequence g[n] is given by

gg= ) lglnll?

n=-—oo

From Parseval’s Theorem we know that
(0] T
— 2 1 G jw Zd
&g = lg[n]| = |G(e/®)| dw
n=—oo —TT

The quantity S;,(w) = |G(ef“))|2 is called the energy density spectrum.

The area under this curve in the range — < w < m divided by 27 is the
energy of the sequence.



Imperial College

Compute the energy of the sequence

Here,

Therefore,

hypln] ==, —0 <n <

co

Z |hp[n] = on J'HLP(er)| dw

n=-—oco

HLP(e]w) = {

1, OSIwISwC
0, w.<|w|<mw

(00}

2|hLP de——<°0

n=—oo —wc

Hence, h;p[n] is a finite energy sequence.
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Introduction. Time sampling theorem resume.

We wish to perform spectral analysis using digital computers.

Therefore, we must somehow sample the Discrete Time Fourier Transform
of the signal!

We will compute a discrete version of the DTFT of a sampled, finite-
duration signal. This transform is known as the Discrete Fourier Transform
(DFT).

The goal is to understand how DFT is related to the original Fourier
transform.

We showed that a signal bandlimited to BHz can be reconstructed from
signal samples if they are obtained at a rate of f; > 2B samples per second.
Not that the signal spectrum exists over the frequency range (in Hz) from
— B to B.

The interval 2B is called spectral width.

Note the difference between spectral width (2B) and bandwidth (B).

In time sampling theorem: f, > 2B or f; >(spectral width).
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Time sampling theorem has a dual: Spectral sampling theorem

Consider a time-limited signal x(t) with a spectrum X (w).

In general, a time-limited signal is 0 for t < T; and t > T,. The duration of
the signalist =T, — T,. Below we assume that T; = 0.

Recall that X (w) = [ x(D)e@tdt = [ x(t)e T@tdt.
The Fourier transform X (w) is assumed real for simplicity.

Spectral sampling theorem

The spectrum X(w) of a signal x(t), time-limited to a duration of
T seconds, can be reconstructed from the samples of X(w) taken at a rate

R samples per Hz, where R > 7 (the signal width or duration in seconds).

X(w)
x(7)

o——r = t

@ —*
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Spectral sampling theorem

We now construct the periodic signal x7 (t). This is a periodic extension
of x(t) with period T, > 7.
This periodic signal can be expressed using Fourier series.

X1, (£) = 1= Dy 0t g = 22
0
1 (T, i 1 7T i 1
D, = T—Ofoox(t) e @l = T—Ofo x(t) e IMwoldt = - X(nwy)
The result indicates that the coefficients of the Fourier series for xg (t)

are the values of X(w) taken at integer multiples of w, and scaled by Ti
0

We call spectrum of a periodic signal the weights of the exponential
terms in its Fourier series representation.

The above implies that the spectrum of the periodic signal xg (t) is the
sampled version of spectrum X (w).
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Spectral sampling theorem cont.

« The spectrum of the periodic signal xr (t) is the sampled version of
spectrum X (w) (see figure below).

I~ | ‘|‘[‘[ (

0 Ty t —= 0 @ ==

= If successive cycles of x (t) do not overlap, x(t) can be recovered
from xr (¢).

= |f we know x(t) we can find X (w).

= The above imply that X(w) can be reconstructed from its samples.

« These samples are separated by the so called fundamental frequency

fo = ~ Hz or wo = 2mfyrads/s of the periodic signal x7 (t).

_TO

« Therefore, the condition for recoveryisTy > 1 = f; < %Hz.
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Spectral interpolation formula

To reconstruct the spectrum X(w) from the samples of X(w), the samples
should be taken at frequency intervals f, < %Hz. If the sampling rate is R
frequency samples/Hz we have:

R = fi > T samples/Hz
0

We know that the continuous version of a signal can be recovered from its
sampled version through the so called signal interpolation formula:

(refer to a Signals and Systems book for the proof of it)

x(t) = T x(nT)h(t — nTy) = ¥ x(nTy)sine (5 — nr)

S

We use the dual of the approach employed to derive the signal
Interpolation formula above, to obtain the spectral interpolation formula
as follows. We assume that x(t) is time-limited to t and centred at T.. We
can prove that:

X(w) = Yn=—o X(nwg)sinc (wTTO — TlT[) e J(@nwo)Te ) = ZT—n, To>1
0
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Spectral interpolation formuia: Proof.

2T

We know that xr, (t) = Y#Z%, Dpe/"0t, w, = ™

Therefore, T{xT (0)} =21 ¥=%, D, (0 — nwy)
[It is easier to prove that F ' {}7'=%,, D,, §(w — nwy)} = x, (£)]

R) W

0
[We were given that x(t) is centred at T_]

We know that F {rect (Tio)} = Tysinc (wTTO)
Therefore, F {rect (t;OTC)} Tosmc ( ZT ) e JwTc
From (1) we see that X(w) = — ?{xTo(t)} x F {rect(

We can write x(t) = xg, (t) - rect(

t—Tc)}

X(w) = —2n[2n__ooD O(w — na)o)] Tosmc( ; ) —JoTe
X(w) = Yp=—o DpTpsinc [(w nsz)T(,] —J@mnwo)Te ) = i_n’ To>7
0

wTy
X((U) — Z X(nwo)SinC (T — ’nT[) e —Jj(w—nwo)T,

n=-—oo
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Discrete Fourier Transform DFT

The numerical computation of the Fourier transform requires samples of
x(t) since computers can work only with discrete values.
Furthermore, the Fourier transform can only be computed at some discrete

values of w.

The goal of what follows is to relate the samples of X(w) with the samples
of x(t).

Consider a time-limited signal x(t). Its spectrum X(w) will not be
bandlimited (try to think why). In other words aliasing after sampling cannot
be avoided.

The spectrum X(w) of the sampled signal x(t) consist of X(w) repeating

every fHz with f; = %
X(w)

0 T E t— 0 f—
X(w)

Ll \/\J\mf\d
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Discrete Fourier Transform DFT cont.

Suppose now that the sampled signal x(t) is repeated periodically every T,
seconds.

According to the spectral sampling theorem, this operation results in
sampling the spectrum at a rate of T, samples/Hz. This means that the

1
samples are spaced at f, = T—Hz.
0

Therefore, when a signal is sampled and periodically repeated, its
spectrum is also sampled and periodically repeated.

The goal of what follows is to relate the samples of X(w) with the samples

Of X(t) (1)
il NN

] ?"“

il tlill‘II;ﬁ _ il um. lfmm:ll” mmtﬂll “inmnnll‘ “hmmni

0 - ___f{ 1 | f—
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Discrete Fourier Transform DFT cont.

The number of samples of the discrete signal in one period T, is Ny =%
(figure below left).

The number of samples of the discrete spectrum in one period is Ny = %
0
= T,
We see that Nj = L L N,.
fo Ta T

This is an interesting observation: the number of samples in a period
of time is identical to the number of samples in a period of frequency.

x(r)

1”“””111114‘

R e

'T”[Hmmtm T””m“ tn. S H“ H!Hn. hHHH”IH[ mnﬂﬂll ”“tumﬂ[” “hm”;'ﬂ

T]) o - - j" = — — =

?‘
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« Since X(w) is not bandlimited, we will get some aliasing effect:

i’{m)

A\

h‘..‘;—-—.._—-—!""

"I-._ ‘-i -
-

—— il

:T:::
0 f

5

« Furthermore, if x(t) is not time limited, we need to truncate x(t) with a
window function. This leads to a “leakage” effect (refer to a Signals and
Systems book for the demonstration of it).

-----

N
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Formal definition of DFT

If x(nT) and X(kw,) are the n'" and k™ samples of x(¢t) and X(w)
respectively, we define:

x[n] = Tx(nT) = %x(nT)
0

X[k] = X(kwo), wo = 2fy = 3
It can be shown that x[n] and X[k] are related by the following equations:
X[k] = 3,2, x[n]e /0 (1)
x[n] = - Zp% ! X[]e %, Qg = wT =2 (2)

0
The equations (1) and (2) above are the direct and inverse Discrete
Fourier Transforms respectively, known as DFT and IDFT.

In the above equations, the summation is performed from 0 to Ny — 1. It
can be shown that the summation can be performed over any successive
N, values of n or k.
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« Use DFT to compute the Fourier transform of 8rect(t) (Lathi page 808.)

8

. x(r)
4
n : \—"m—
0.5 0.5 . w —-
: 27 4:.'1' 8_11'
4 S 0 > 4 f(Hz)—=

 The essential bandwidth B (calculated by finding where the amplitude
response drops to 1% of its peak value) is well above 16Hz. However, we

select B = 4Hz;:

= To observe the effects of aliasing.
= |n order not to end up with a huge number of samples in time.
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B=%Hzﬁ=8HaT=%=

S

OO_IP—\

1

For the frequency resolution we choose f, = S Hz. This choice gives us 4
samples in each lobe of X(w) and T, = fi = 4s.
0

X

8;! l\ F ’

§ .
;) S/ Exact
%

FFT values

i

fi

¢

i R i

Pl B il ;TTT\-.: A

W | W =

31

-----

_:4 _'2 L 2 4 f (Hz) —»
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Ny = % = % = 32. Therefore, we must repeat x(t) every 4s and take

samples every %s. This yields 32 samples in a period.

x[n] = Tx(nT) = %x(g) with x(t) = 8rect(t).

The DFT of the signhal x[n] is obtained by taking any full period of x[n]
(i.e., Ny samples) and not necessarily N, over the interval (0,T,) as we
assumed in the theoretical analysis of DFT.

I

~36—32-28 ~16 4 16 28 32 36

.1',1".

4 -2 ~05 0 0.5 2 4 s
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1 0<n<3 and 29<n<31 e
x[n] =40 5<n<27 m lm
0.5 n=4,28 il |

—_ —_ 4 . —
'QO — an 4z 0 0.5 2 4

X[k] = X0 x[n]e T*on = 331 'x[n]e Ik(T/16)n See figure below.

"\

it

'-EK/ Exact
i FFT values
I

i

t k

" J':'.‘I:if q‘\ S 1 E :.‘;TTT'&?‘ P ) “,-'1’ rl\_._ - [
NS RG] [ e a ll T
| h\.i-‘. ‘ k= N .‘;

0
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« Observe that X[k] is periodic.
« The dotted curve depicts the Fourier transform of x(t) = 8rect(t).

« The aliasing error is quite visible when we use a single graph to compare
the superimposed plots. The error increases rapidly with k.

'''''
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Appendix: Proot of DFT relationships

For the sampled signal we have:
x(®) = 2y x(nT)8(t — nT).

Since §(t — nT) & e~ /neT
No—-1

X(w) = z x(nT)e JneT
n=0
For |w| < =5 X(a)) the Fourier transform of x(t) is Q le.,

X(w) = TX(w) = T 300 x(nT)e IneT, Ia)l <=
No—1

X[k]=X(kwy) =T z x(nT)e Jk@oT

n=0

If we let woT = Q, then Qy = w T = 2nf,T = Izv—” and also Tx(nT) = x[n].
0

Therefore, X[k] = Y12 x[n]e /nk%
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Appendix: Proot of DFT relationships

To prove the inverse relationship write:

No—1 1 N -1 No—1 1 1
kgO X[k]e]kmﬂo — 0 [Znoo x e ]nkﬂo]e]kmﬂo =
No—1 jkmQy — No—1 No—1 —jk(n—-m)Q
k=0 Xlkle 0 _Zn o X[n [Zk o € 0]
k=0 k=0 otherwise

Since 0 < m,n < N, — 1 the only multiple of N0 that the term (n —m) can

be is 0. Therefore:
No—1

2 e—jk(n—m)lzv—z _ Ny n—m=0=>n=m
0 otherwise
k=0
Therefore,
Xm = o Zaso X[Kk]e/kmao, Qg = 2
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Continue with Dr Mike Brookes's notes

 For the rest of the material related to DFT refer to Dr Mike Brookes’s
notes Three Different Fourier Transforms, from section Symmetries to the
end.



