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Three different Fourier Transforms:

e CTFT (Continuous-Time Fourier Transform): x(t) — X (j2)
DTFT (Discrete-Time Fourier Transform): z[n] — X (e’*)
e DFT a.k.a. FFT (Discrete Fourier Transform): z[n] — X k]

Forward Transform Inverse Transform
CTFT X(jQ) = [ _z(t)e Pdt  z(t) = 5= [*._ X (jQ)eHdO
DTFT X (ed¥) =" z[nle9¥"  zn] =5 [*_ X(e/¥)e/*"dw

DFT XIk| = Zév_l z[nle= 2R z[n] = ~ év_l X [k]ed?m %

We use € for “real” and w = QT for “normalized” angular frequency.
Nyquist frequency is at Onyq = 277% = 7 and wnyq = 7.
For “power signals” (energy o< duration), CTFT & DTFT are unbounded.
Fix this by normalizing:

X () = imayeo 55 fflA r(t)e I dt

X (€/%) = limg_o0 ﬁ Zi‘A x[n]e”Iwn

DSP and Digital Filters (2017-10159) Fourier Transforms: 2 -2 / 14



Convergence of DTFT

B s et DTFT: X (e/%) = > x[n]e™7“" does not converge for all z[n].
Fourier Transform . . . y K __ 1

¥ Convergence of Consider the finite sum: Xk (e/%) = Z_K x[nleIwm

> DTFT

DTFT Properties

_ Strong Convergence:
DFT Properties

S x[n] absolutely summable = X (/) converges uniformly
arseval's Theorem . .
e o > |z[n]] < oo = sup,, | X (e/%) — X (e7*)] ——0

Sampling Process
Zero-Padding

Phase Unwrapping Weaker convergence:

Uncertainty principle x|n] finite energy = X (e’%) converges in mean square
Summary
MATLAB routines Z—oo |CIZ’[TL” < 00 = QL ’X(@jw) _ XK(@Jw)| dw ——— 0
TS K—oco
Example: x[n| = sn0.50mn
mn
1 K=5 1 K=20 1 K=50
0.8 0.8 0.8
3; 0.6 3: 0.6 3: 0.6
£ 04 & 0.4 & 0.4
0.2 0.2 0.2
0 0 0
0% 01 02z 03 04 05 0% 01 02z 03 024 05 0% 01 02z 03 02 05
w/21t  (rad/sample) w/21t  (rad/sample) w/21t  (rad/sample)

Gibbs phenomenon:
Converges at each w as K — oo but peak error does not get smaller.

DSP and Digital Filters (2017-10159) Fourier Transforms: 2 -3 / 14



[IDTFT Convergence Proofs]

(1) Strong Convergence: [these proofs are not examinable]
We are given that 3 ™ |z[n]| < oo = Ve >0, INsuchthat >, -y |z[n]| <e
For K > N, sup,, }X(ej“’) — XK(ejw)‘ = sup,, )Z|n|>K x[n]e‘jw”‘

<sup,, (Spns i [2lnle 790 ) = 5 s i l2ln]] < e

(2) Weak Convergence:

We are given that 3°°° |z[n]|® < co = Ve > 0, 3 N such that 2 in|>N z[n]|? < e

< , .
Define yl&l[n] = 0 n| < K so that its DTFT is, YIEl(e/w) = 37 ylKl[p]e—iwn
We see that X (e/*) — X (e7¥) = 3°°° _ x[n]e= 79" — S5 x[nle—Iwn

From Parseval’'s theorem, > °° |y[K] [n]}Q — % fif |y[K] ejw)}Q dew
— 27r — }X(ejw) — XK(€JW)| dw

Hence for K > N, 27T 7T’X(e*?“’)—XK(eJW)} dw =Y " }y [nH :Z|n|>N|x[n]|2 < €
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DTFT: X(e%) =537

' x[n]emIwm
e DTFT is periodic in w: X (el@+2m™)) = X (/%) for integer m.

e DTFT is the z-Transform evaluated at the point e/“:

X(z) = Y, cln]"
DTFT converges iff the ROC includes |z]| = 1.

e DTFT is the same as the CTFT of a signal comprising impulses at
the sample times (Dirac § functions) of appropriate heights:

z5(t) = > x[n|o(t — nT)=z(t) x Y. 0(t —nT)

Equivalent to multiplying a continuous z(¢) by an impulse train.

Proof: X (e?¥) =Y x[n]e 7w

o

ZZO__OO zn] [ 6(t— nT)e 99T dt
f S xn)d(t —nT)e iwrdt
= f eI gt
(i) OK if D7 \az[nn <oo. (i) use w = QT

DSP and Digital Filters (2017-10159) Fourier Transforms: 2 — 4 / 14



DFT Properties

2: Three Different
Fourier Transforms

Fourier Transforms

Convergence of
DTFT

DTFT Properties
> DFT Properties
Symmetries
Parseval’'s Theorem
Convolution
Sampling Process
Zero-Padding
Phase Unwrapping
Uncertainty principle
Summary
MATLAB routines

DFT: X[k] = év_l xn)e 72T R
DTFT: X(e/¥) =Y x[nle 7v"

o

Case 1: z[n] =0 forn ¢ |0, N — 1]

DFT is the same as DTFT at wy = %Tk

: _ __ 9 N—1
The {wy } are uniformly spaced from w = 0 to w = 27 =%~

DFT is the z-Transform evaluated at N equally spaced points
around the unit circle beginning at z = 1.

Case 2: x|n| is periodic with period N

DFT equals the normalized DTFT
X[k] = th_>OO % X XK(ej“k)

where Xg(e79) = 28 z[n]e=iwn
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[Proof of Case 2]

We want to show that if x[n] = z[n + N] (i.e. xz[n] is periodic with period N) then
lim g o0 507 X XK (e99%) £ limp 00 s X D1 g w[n]e 996" = XT[k]

where wy, = 2Zk. We assume that z[n] is bounded with |z[n]| < B.

We first note that the summand is periodic:

x[n + N]e‘jwk(”+N) = x[n]e‘jwkne_jk%]v = x[n]e‘jwk”e_ﬂﬁk = x[n]e‘jwk”.

We now define M and R so that 2K +1 = MN + R where 0 < R < N (i.e. MN is the largest
multiple of N that is < 2K + 1). We can now write

N K —j N K—R —; N K _j
SRTT X 2k Tne IR = g X Qg wn]e IR + e X 2k gy @nle 70"

The first sum contains M N consecutive terms of a periodic summand and so equals M times the sum

over one period. The second sum contains R bounded terms and so its magnitude is < RB < NB.

N % . -
So m X Z_KI’[?’L]G JWET — MN—|—R X Z [ ]6 kan"‘P: 1+LLN X X[k?] +P
N NB
Where|P|<MN+RXNB§MN_i_OXNB:w
As M — oo, — 1 so the whole expression tends to X[k].

N
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Symmetries

& L Billeenr If z[n] has a special property then X (e7“)and X [k] will have correspondin

Fourier Transforms y

PTG TG properties as shown in the table (and vice versa):

Convergence of

DTFT

DTFT Properties

EFT Properties One domain Other domain
Symmetries

Parsevlal's Theorem Discrete Periodic

Convolution - -

Sampling Process Sym metric Sym metric

i:::;ﬂ:fpp;ng Antisymmetric Antisymmetric

Uncertainty principle Real Conjugate Symmetric

Summary - . . .

MATLAB routines Imaginary Conjugate Antisymmetric

Real + Symmetric Real + Symmetric

Real + Antisymmetric | Imaginary + Antisymmetric

Symmetric: z|n| = z[-n]
X(e?v) = X(e™7v)

X[k] = X[(—k) | = X[N — k] for k > 0

mod N
Conjugate Symmetric: z[n| = z*[—n]
Conjugate Antisymmetric: x[n] = —z*[—n]
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Fourier transforms preserve “energy”

CTFT  [lz@®)f dt = 5= [IX(GQ)" dQ
DTFT 3% [a[n]® = & [™ [ X(e7%)]” du
DFT o lalllt =& 20 T IXK])

More generally, they actually preserve complex inner products:

S anlytn] = L 00 T X RV [A]

Unitary matrix viewpoint for DFT:

If we regard x and X as vectors, then X = Fx where F' is
a symmetric matrix defined by fri1.,401 = e 7?7~ .

The inverse DFT matrix is F~1 = +F#
equivalently, G = \/LNF is a unitary matrix with GG =1.
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DTFT: Convolution — Product

z[n] = g[n] x hin]=

2 oo 9lkIRIn — K]

= X (&%) = G(e?¥)H (e¥)

DFT: Circular convolution— Product

z[n]

= g|n] ®n h[n|=
= X |[k]

> im0 9IKIRI(n = k) mody]

= G[k]HI]

DTFT: Product— Circular Convolution =27
y[n] = g[n]h[n]

S Y (%) = L G(e) @, H(e) =

yln] = gln|h|n]

= Y|k| =

% ffﬁ G(ejQ)H(ej(w_e))dQ

DFT: Product— Circular Convolution =N

LGk @y HIK)

gln] : ru hin] : Ll gln| x hn] : l [ ‘ | ] gln| ®3 h(n|

DSP and Digital Filters (2017-10159)
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Sampling Process

Time Time Frequency
Arals W ]
il
Low Pass « IR W CTFT
Filter |l
Sample X T s TT‘rl "TT?J»L*TTH \f DT_F>T ‘ [
1.0 17,1,
Window X cososett M Mt00cc0es 3 . ??QLNTQN DTFT /U\M
DFT . ?TWTT@N DFT ﬂ’T Th

()— Filter —< A/D Converter Window DFT —
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Zero padding means added extra zeros onto the end of z[n| before
performing the DFT.

Time x|n] Frequency | X [k]|
Windowed
Signal Ill
With zero-
padding IE

e Zero-padding causes the DFT to evaluate the DTFT at more values
of wy. Denser frequency samples.

e Width of the peaks remains constant: determined by the length and
shape of the window.

e Smoother graph but increased frequency resolution is an illusion.
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Phase Unwrapping

2: Three Different Phase of a DTFT is only defined to within an integer multiple of 2.

Fourier Transforms

Fourier Transforms

Convergence of
DTFT

DTFT Properties

DFT Properties T TT
Symmetries 0'3? L) Q

&
Parseval's Theorem LJ}

Convolution

Sampling Process -
Zero-Padding w (rad/sample)

> Phase Unwrappin
> Unwrapeivg o[} X[K]
Uncertainty principle

Summary

MATLAB routines

0 L
é-zo -
; ; ; 40 ; ; ;
2 0 2 2 0 2
w (rad/sample) w (rad/sample)
/X [K] /X k] unwrapped

Phase unwrapping adds multiples of 27 onto each /X [k] to make the
phase as continuous as possible.
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Uncertainty principle

2: Three Different
Fourier Transforms

N

Fourier Transforms

Letopar) (fwﬂX(jw)Pdw)% o1
TTe (@) d TIXGoPd ) =2

The first term measures the “width” of z(¢) around ¢t = 0.

CTFT uncertainty principle: (

Convergence of
DTFT

DTFT Properties

Sy It is like o if |z(t)|” was a zero-mean probability distribution.
Parseval’s Theorem The second term is similarly the “width” of X (jw) in frequency.

Convolution

A signal cannot be concentrated in both time and frequency.

Sampling Process
Zero-Padding

Phase Unwrapping Proof Outline:

> principle Assume f\:r; )P dt =1= [|X(jw)|? dw =27 [Parseval]
Summar

MATLAyB routines Set /U( ) _:> V(]CU) — ]UJX(]CU) [by partS]

Now ftxfi—fdt— lth(t)‘t:_oo — [222dt =0— 5 [by parts]

— | [ tedzdt|” < ([ t2a2dt) ( [ dt) [Schwartz]

(f 2a2dt) ([ [o(t)*dt)= (f 12a2dt) (& [ [V (o) dw)
= ([ #2a2dt) (5 [w? X (je)| dov)

No exact equivalent for DTFT/DFT but a similar effect is true
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[Uncertainty Principle Proof Steps]

(1) Suppose v(t) = %%. Then integrating the CTFT definition by parts w.r.t. t gives
de(t) _— .
X(jQ) = ffooo x(t)e it = [ Lo(t)e™ Jﬂt] + A [0, M e=i0tat = 0 + LV (jQ)
(2) Since % (lx2) xi—f, we can apply integration by parts to get
&) 27 ©© oo dt 2 _ 1 oo 2 _ 1 _ 1
[ taz—dt [t x i | DA S ta?dt=—1 [ 2?dt=—-2 x1=—1
It follows that ’f trdz dt’ —%)2 = % which we will use below.

(3) The Cauchy-Schwarz inequality is that in a complex inner product space

lu-v|? < (u-u)(v-v). For the inner-product space of real-valued square-integrable functions
2

this becomes | [~ u(t)v(t)dt‘ < [ uF(t)de x [T

and v(t) dw(t) to get

| et < ( (%) de) = (7 2a) (0?1
(4) From Parseval’s theorem for the CTFT, [v2(¢)dt =

= [ 1V( jQ|2dQ From step (1), we can
substitute V (jQ2) = jQX (j) to obtain [v?(t)dt = 5= = [O? X (5Q? dQ. Making this substitution
in (3) gives

T < (ft2a2dt) (f02(t)dt) = ([ t3x2dt) (% [ w? |X(jQ|2dQ)

v2(t)dt. We apply this with u(t) = tz(t)
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[]

O o 0O o o

Three types: CTFT, DTFT, DFT

— DTFT = CTFT of continuous signal x impulse train
— DFT = DTFT of periodic or finite support signal

> DFT is a scaled unitary transform

DTFT: Convolution — Product; Product — Circular Convolution
DFT: Product <> Circular Convolution

DFT: Zero Padding — Denser freq sampling but same resolution
Phase is only defined to within a multiple of 2.

Whenever you integrate over frequency you need a scale factor

— % for CTFT and DTFT or % for DFT
— e.g. Inverse transform, Parseval, frequency domain convolution

For further details see Mitra: 3 & 5.
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MATLAB routines
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Summary
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fft, ifft DFT with optional zero-padding
fftshift swap the two halves of a vector
conv convolution or polynomial multiplication (not
circular)
z[n|®y[n| real (ifft(fft(x).*fft(y)))
unwrap remove 27 jumps from phase spectrum

DSP and Digital

Filters (2017-10159)

Fourier Transforms: 2 — 14 / 14



	2: Three Different Fourier Transforms
	Fourier Transforms
	Convergence of DTFT
	DTFT Properties
	DFT Properties
	Symmetries
	Parseval's Theorem
	Convolution
	Sampling Process
	Zero-Padding
	Phase Unwrapping
	Uncertainty principle
	Summary
	MATLAB routines


