One solution that does not always work! (extended Huffman)

Letter | Probability | Codeword
S1 0.95 0
59 0.02 11
S3 0.03 10

Table 1: Huffman code for three-letter alphabet; H 0.335
bits/symbol; ., = 1.05 bits/symbol; redundancy = 0.715
bits/symbol or 213% of entropy.

Letter | Probability | Code

5151 0.9025 0
5159 0.0190 111
5183 0.0285 100

5951 0.0190 1101
5959 0.0004 110011
5253 0.0006 110001
53851 0.0285 101
5352 0.0006 110010
5353 0.0009 110000

Table 2. The Huffman code for the extended alphabet; [,,, = 1.222
bits/new symbol or [,,, = 0.611 bits/original symbol; redundancy

= 72% of entropy; redundancy drops to acceptable values for N=8
(alphabet size = 6561).



Comparision of Huffman and arithmetic coding

H(s) <12 < H(s) L

avg — m

H(s) <13 < H(S) L2

avg — m

e Huffman seems to have an advantage. However, it
requires building the entire code for all possible se-

quences of length m (k=16, m=2 — codebook size
= 16%1)

e In practice, we can make m large for arithmetic but
not for Huffman coder = for most sources we can get
rates closer to the entropy using arithmetic coding
than by using Huffman coding (except when p; = 27F)

e arithmetic coding best suited for sources with small
alphabet (e.g., facsimile) and highly unbalanced prob-
abilities

e easy to implement a system with multiple arithmetic
codes (— JBIG)

e easier to adapt arithmetic codes to changing input
statistics (local structure — JBIG)



